Timezone: »
Bayesian Reinforcement Learning has generated substantial interest recently, as it provides an elegant solution to the exploration-exploitation trade-off in reinforcement learning. However most investigations of Bayesian reinforcement learning to date focus on the standard Markov Decision Processes (MDPs). Our goal is to extend these ideas to the more general Partially Observable MDP (POMDP) framework, where the state is a hidden variable. To address this problem, we introduce a new mathematical model, the Bayes-Adaptive POMDP. This new model allows one to (1) improve knowledge of the POMDP domain through interaction with the environment, and (2) plan optimal sequences of actions which can trade-off between improving the model, identifying the state, and gathering reward. We show how the model can be finitely approximated while preserving the value function. We describe approximations for belief tracking and planning in this model. Empirical results on two domains show that the model estimate and agent's return improve over time, as the agent learns better model estimates.
Author Information
Stephane Ross (McGill University)
Brahim Chaib-draa (Laval University)
Joelle Pineau (McGill University)
Joelle Pineau is an Associate Professor and William Dawson Scholar at McGill University where she co-directs the Reasoning and Learning Lab. She also leads the Facebook AI Research lab in Montreal, Canada. She holds a BASc in Engineering from the University of Waterloo, and an MSc and PhD in Robotics from Carnegie Mellon University. Dr. Pineau's research focuses on developing new models and algorithms for planning and learning in complex partially-observable domains. She also works on applying these algorithms to complex problems in robotics, health care, games and conversational agents. She serves on the editorial board of the Journal of Artificial Intelligence Research and the Journal of Machine Learning Research and is currently President of the International Machine Learning Society. She is a recipient of NSERC's E.W.R. Steacie Memorial Fellowship (2018), a Fellow of the Association for the Advancement of Artificial Intelligence (AAAI), a Senior Fellow of the Canadian Institute for Advanced Research (CIFAR) and in 2016 was named a member of the College of New Scholars, Artists and Scientists by the Royal Society of Canada.
Related Events (a corresponding poster, oral, or spotlight)
-
2007 Poster: Bayes-Adaptive POMDPs »
Tue. Dec 4th 06:30 -- 06:40 PM Room
More from the Same Authors
-
2021 : Block Contextual MDPs for Continual Learning »
Shagun Sodhani · Franziska Meier · Joelle Pineau · Amy Zhang -
2021 : What makes for an interesting RL problem? »
Joelle Pineau -
2021 Poster: Multi-Objective SPIBB: Seldonian Offline Policy Improvement with Safety Constraints in Finite MDPs »
harsh satija · Philip Thomas · Joelle Pineau · Romain Laroche -
2020 : Joelle Pineau - Can pre-registration lead to better reproducibility in ML research? »
Joelle Pineau -
2020 Workshop: Deep Reinforcement Learning »
Pieter Abbeel · Chelsea Finn · Joelle Pineau · David Silver · Satinder Singh · Coline Devin · Misha Laskin · Kimin Lee · Janarthanan Rajendran · Vivek Veeriah -
2020 Workshop: ML Retrospectives, Surveys & Meta-Analyses (ML-RSA) »
Chhavi Yadav · Prabhu Pradhan · Jesse Dodge · Mayoore Jaiswal · Peter Henderson · Abhishek Gupta · Ryan Lowe · Jessica Forde · Joelle Pineau -
2020 Poster: Adversarial Soft Advantage Fitting: Imitation Learning without Policy Optimization »
Paul Barde · Julien Roy · Wonseok Jeon · Joelle Pineau · Chris Pal · Derek Nowrouzezahrai -
2020 Spotlight: Adversarial Soft Advantage Fitting: Imitation Learning without Policy Optimization »
Paul Barde · Julien Roy · Wonseok Jeon · Joelle Pineau · Chris Pal · Derek Nowrouzezahrai -
2020 Poster: Novelty Search in Representational Space for Sample Efficient Exploration »
Ruo Yu Tao · Vincent Francois-Lavet · Joelle Pineau -
2020 Oral: Novelty Search in Representational Space for Sample Efficient Exploration »
Ruo Yu Tao · Vincent Francois-Lavet · Joelle Pineau -
2019 Workshop: Retrospectives: A Venue for Self-Reflection in ML Research »
Ryan Lowe · Yoshua Bengio · Joelle Pineau · Michela Paganini · Jessica Forde · Shagun Sodhani · Abhishek Gupta · Joel Lehman · Peter Henderson · Kanika Madan · Koustuv Sinha · Xavier Bouthillier -
2019 Poster: No-Press Diplomacy: Modeling Multi-Agent Gameplay »
Philip Paquette · Yuchen Lu · SETON STEVEN BOCCO · Max Smith · Satya O.-G. · Jonathan K. Kummerfeld · Joelle Pineau · Satinder Singh · Aaron Courville -
2018 : Joelle Pineau »
Joelle Pineau -
2018 Workshop: Deep Reinforcement Learning »
Pieter Abbeel · David Silver · Satinder Singh · Joelle Pineau · Joshua Achiam · Rein Houthooft · Aravind Srinivas -
2018 Poster: Temporal Regularization for Markov Decision Process »
Pierre Thodoroff · Audrey Durand · Joelle Pineau · Doina Precup -
2018 Invited Talk: Reproducible, Reusable, and Robust Reinforcement Learning »
Joelle Pineau -
2017 : Invited Talk - Joelle Pineau »
Joelle Pineau -
2017 Demonstration: A Deep Reinforcement Learning Chatbot »
Iulian Vlad Serban · Chinnadhurai Sankar · Mathieu Germain · Saizheng Zhang · Zhouhan Lin · Sandeep Subramanian · Taesup Kim · Michael Pieper · Sarath Chandar · Nan Rosemary Ke · Sai Rajeswar Mudumba · Alexandre de Brébisson · Jose Sotelo · Dendi A Suhubdy · Vincent Michalski · Joelle Pineau · Yoshua Bengio -
2017 Poster: Multitask Spectral Learning of Weighted Automata »
Guillaume Rabusseau · Borja Balle · Joelle Pineau -
2016 : Joelle Pineau »
Joelle Pineau -
2016 Poster: A Credit Assignment Compiler for Joint Prediction »
Kai-Wei Chang · He He · Stephane Ross · Hal Daumé III · John Langford -
2014 Workshop: From Bad Models to Good Policies (Sequential Decision Making under Uncertainty) »
Odalric-Ambrym Maillard · Timothy A Mann · Shie Mannor · Jeremie Mary · Laurent Orseau · Thomas Dietterich · Ronald Ortner · Peter Grünwald · Joelle Pineau · Raphael Fonteneau · Georgios Theocharous · Esteban D Arcaute · Christos Dimitrakakis · Nan Jiang · Doina Precup · Pierre-Luc Bacon · Marek Petrik · Aviv Tamar -
2014 Workshop: Autonomously Learning Robots »
Gerhard Neumann · Joelle Pineau · Peter Auer · Marc Toussaint -
2014 Demonstration: SmartWheeler – A smart robotic wheelchair platform »
Martin Gerdzhev · Joelle Pineau · Angus Leigh · Andrew Sutcliffe -
2013 Poster: Learning from Limited Demonstrations »
Beomjoon Kim · Amir-massoud Farahmand · Joelle Pineau · Doina Precup -
2013 Poster: Bellman Error Based Feature Generation using Random Projections on Sparse Spaces »
Mahdi Milani Fard · Yuri Grinberg · Amir-massoud Farahmand · Joelle Pineau · Doina Precup -
2013 Spotlight: Learning from Limited Demonstrations »
Beomjoon Kim · Amir-massoud Farahmand · Joelle Pineau · Doina Precup -
2012 Poster: A Marginalized Particle Gaussian Process Regression »
Yali Wang · Brahim Chaib-draa -
2012 Poster: On-line Reinforcement Learning Using Incremental Kernel-Based Stochastic Factorization »
Andre S Barreto · Doina Precup · Joelle Pineau -
2011 Session: Oral Session 10 »
Joelle Pineau -
2011 Poster: Reinforcement Learning using Kernel-Based Stochastic Factorization »
Andre S Barreto · Doina Precup · Joelle Pineau -
2010 Workshop: Learning and Planning from Batch Time Series Data »
Daniel Lizotte · Michael Bowling · Susan Murphy · Joelle Pineau · Sandeep Vijan -
2010 Poster: PAC-Bayesian Model Selection for Reinforcement Learning »
Mahdi Milani Fard · Joelle Pineau -
2010 Poster: Bootstrapping Apprenticeship Learning »
Abdeslam Boularias · Brahim Chaib-draa -
2009 Poster: Manifold Embeddings for Model-Based Reinforcement Learning under Partial Observability »
Keith Bush · Joelle Pineau -
2008 Poster: MDPs with Non-Deterministic Policies »
Mahdi Milani Fard · Joelle Pineau -
2007 Poster: Theoretical Analysis of Heuristic Search Methods for Online POMDPs »
Stephane Ross · Joelle Pineau · Brahim Chaib-draa