Timezone: »

 
Spotlight
Bayes-Adaptive POMDPs
Stephane Ross · Brahim Chaib-draa · Joelle Pineau

Tue Dec 04 05:20 PM -- 05:30 PM (PST) @ None

Bayesian Reinforcement Learning has generated substantial interest recently, as it provides an elegant solution to the exploration-exploitation trade-off in reinforcement learning. However most investigations of Bayesian reinforcement learning to date focus on the standard Markov Decision Processes (MDPs). Our goal is to extend these ideas to the more general Partially Observable MDP (POMDP) framework, where the state is a hidden variable. To address this problem, we introduce a new mathematical model, the Bayes-Adaptive POMDP. This new model allows one to (1) improve knowledge of the POMDP domain through interaction with the environment, and (2) plan optimal sequences of actions which can trade-off between improving the model, identifying the state, and gathering reward. We show how the model can be finitely approximated while preserving the value function. We describe approximations for belief tracking and planning in this model. Empirical results on two domains show that the model estimate and agent's return improve over time, as the agent learns better model estimates.

Author Information

Stephane Ross (McGill University)
Brahim Chaib-draa (Laval University)
Joelle Pineau (McGill University)

Joelle Pineau is an Associate Professor and William Dawson Scholar at McGill University where she co-directs the Reasoning and Learning Lab. She also leads the Facebook AI Research lab in Montreal, Canada. She holds a BASc in Engineering from the University of Waterloo, and an MSc and PhD in Robotics from Carnegie Mellon University. Dr. Pineau's research focuses on developing new models and algorithms for planning and learning in complex partially-observable domains. She also works on applying these algorithms to complex problems in robotics, health care, games and conversational agents. She serves on the editorial board of the Journal of Artificial Intelligence Research and the Journal of Machine Learning Research and is currently President of the International Machine Learning Society. She is a recipient of NSERC's E.W.R. Steacie Memorial Fellowship (2018), a Fellow of the Association for the Advancement of Artificial Intelligence (AAAI), a Senior Fellow of the Canadian Institute for Advanced Research (CIFAR) and in 2016 was named a member of the College of New Scholars, Artists and Scientists by the Royal Society of Canada.

More from the Same Authors