Timezone: »

 
Oral
Exponential Family Predictive Representations of State
David Wingate · Satinder Singh

Wed Dec 05 11:30 AM -- 11:50 AM (PST) @ None

In order to represent state in controlled, partially observable, stochastic dynamical systems, some sort of sufficient statistic for history is necessary. Predictive representations of state (PSRs) capture state as statistics of the future. We introduce a new model of such systems called the ``Exponential family PSR,'' which defines as state the time-varying parameters of an exponential family distribution which models n sequential observations in the future. This choice of state representation explicitly connects PSRs to state-of-the-art probabilistic modeling, which allows us to take advantage of current efforts in high-dimensional density estimation, and in particular, graphical models and maximum entropy models. We present a parameter learning algorithm based on maximum likelihood, and we show how a variety of current approximate inference methods apply. We evaluate the quality of our model with reinforcement learning by directly evaluating the control performance of the model.

Author Information

David Wingate (Brigham Young University)
Satinder Singh (University of Michigan)

More from the Same Authors