Timezone: »
Adaptation to other initially unknown agents often requires computing an effective counter-strategy. In the Bayesian paradigm, one must find a good counter-strategy to the inferred posterior of the other agents' behavior. In the experts paradigm, one may want to choose experts that are good counter-strategies to the other agents' expected behavior. In this paper we introduce a technique for computing robust counter-strategies for adaptation in multiagent scenarios under a variety of paradigms. The strategies can take advantage of a suspected tendency in the decisions of the other agents, while bounding the worst-case performance when the tendency is not observed. The technique involves solving a modified game, and therefore can make use of recently developed algorithms for solving very large extensive games. We demonstrate the effectiveness of the technique in two-player Texas Hold'em. We show that the computed poker strategies are substantially more robust than best response counter-strategies, while still exploiting a suspected tendency. We also compose the generated strategies in an experts algorithm showing a dramatic improvement in performance over using simple best responses.
Author Information
Michael Johanson (University of Alberta)
Martin A Zinkevich (Yahoo! Inc.)
Michael Bowling (DeepMind / University of Alberta)
More from the Same Authors
-
2016 : Computer Curling: AI in Sports Analytics »
Michael Bowling -
2016 Poster: The Forget-me-not Process »
Kieran Milan · Joel Veness · James Kirkpatrick · Michael Bowling · Anna Koop · Demis Hassabis -
2016 Poster: Deep Learning Games »
Dale Schuurmans · Martin A Zinkevich -
2012 Poster: Sketch-Based Linear Value Function Approximation »
Marc Bellemare · Joel Veness · Michael Bowling -
2012 Poster: Tractable Objectives for Robust Policy Optimization »
Katherine Chen · Michael Bowling -
2011 Poster: Variance Reduction in Monte-Carlo Tree Search »
Joel Veness · Marc Lanctot · Michael Bowling -
2010 Workshop: Learning and Planning from Batch Time Series Data »
Daniel Lizotte · Michael Bowling · Susan Murphy · Joelle Pineau · Sandeep Vijan -
2009 Poster: Strategy Grafting in Extensive Games »
Kevin G Waugh · Nolan Bard · Michael Bowling -
2009 Poster: Monte Carlo Sampling for Regret Minimization in Extensive Games »
Marc Lanctot · Kevin G Waugh · Martin A Zinkevich · Michael Bowling -
2008 Session: Oral session 3: Learning from Reinforcement: Modeling and Control »
Michael Bowling -
2007 Spotlight: Stable Dual Dynamic Programming »
Tao Wang · Daniel Lizotte · Michael Bowling · Dale Schuurmans -
2007 Poster: Stable Dual Dynamic Programming »
Tao Wang · Daniel Lizotte · Michael Bowling · Dale Schuurmans -
2007 Spotlight: Regret Minimization in Games with Incomplete Information »
Martin A Zinkevich · Michael Johanson · Michael Bowling · Carmelo Piccione -
2007 Poster: Regret Minimization in Games with Incomplete Information »
Martin A Zinkevich · Michael Johanson · Michael Bowling · Carmelo Piccione -
2006 Poster: iLSTD: Convergence, Eligibility Traces, and Mountain Car »
Alborz Geramifard · Michael Bowling · Martin A Zinkevich · Richard Sutton