Timezone: »
There are around 100,000 neurons under a mm^2 of cerebral cortex and about one billion synapses. Thalamic inputs to the cortex carry information that is transformed by local microcircuits of excitatory and inhibitory neurons. In recent years there has been an explosion of discoveries about the anatomical organization of the micrcircuits and the physiolgical properties of the neurons and synapses that compose them. The goal of this workshop is to explore the functional implications of these new findings and in particular to attempt to characterize the elementary computational operations that are performed in different layers of cortex.
Author Information
Tomaso Poggio (MIT)
Tomaso A. Poggio, is the Eugene McDermott Professor in the Dept. of Brain & Cognitive Sciences at MIT and the director of the new NSF Center for Brains, Minds and Machines at MIT of which MIT and Harvard are the main member Institutions. He is a member of both the Computer Science and Artificial Intelligence Laboratory and of the McGovern Brain Institute. He is an honorary member of the Neuroscience Research Program, a member of the American Academy of Arts and Sciences, a Founding Fellow of AAAI and a founding member of the McGovern Institute for Brain Research. Among other honors he received the Laurea Honoris Causa from the University of Pavia for the Volta Bicentennial, the 2003 Gabor Award, the Okawa Prize 2009, the AAAS Fellowship and the 2014 Swartz Prize for Theoretical and Computational Neuroscience. He is one of the most cited computational scientists with contributions ranging from the biophysical and behavioral studies of the visual system to the computational analyses of vision and learning in humans and machines. With W. Reichardt he characterized quantitatively the visuo-motor control system in the fly. With D. Marr, he introduced the seminal idea of levels of analysis in computational neuroscience. He introduced regularization as a mathematical framework to approach the ill-posed problems of vision and the key problem of learning from data. In the last decade he has developed an influential hierarchical model of visual recognition in the visual cortex. The citation for the recent 2009 Okawa prize mentions his ââ¦outstanding contributions to the establishment of computational neuroscience, and pioneering researches ranging from the biophysical and behavioral studies of the visual system to the computational analysis of vision and learning in humans and machines.â His research has always been interdisciplinary, between brains and computers. It is now focused on the mathematics of learning theory, the applications of learning techniques to computer vision and especially on computational neuroscience of the visual cortex. A former Corporate Fellow of Thinking Machines Corporation and a former director of PHZ Capital Partners, Inc., he is a director of Mobileye and was involved in starting, or investing in, several other high tech companies including Arris Pharmaceutical, nFX, Imagen, Digital Persona and Deep Mind. Tomaso Poggio Eugene McDermott Professor Director NSF Science & Technology Center for Brains, Minds and Machines(CBMM) http://cbmm.mit.edu/ Core founding scientific advisor, MIT Quest for Intelligence McGovern Institute CSAIL (Computer Science and Artificial Intelligence Lab) Brain Sciences Department M.I.T., 46-5177B see http://whereis.mit.edu/?selection=46&Buildings=go 43 Vassar Street Cambridge, MA 02142 E-mail: tp@ai.mit.edu Phone: 617-253-5230 Fax: 617-253-2964 Web: http://cbcl.mit.edu/people/poggio/poggio-new.htm PoggioLab Web page: http://cbcl.mit.edu/
Terrence Sejnowski (Salk Institute)
More from the Same Authors
-
2022 : Exploring The Precision of Real Intelligence Systems at Synapse Resolution »
Mohammad Samavat · Tom Bartol · Kristen Harris · Terrence Sejnowski -
2022 : Shannon Information of Synaptic Weights Post Induction of Long-Term Potentiation (Learning) is Nearly Maximized »
Mohammad Samavat · Tom Bartol · Cailey Bromer · Jared Bowden · Dusten Hubbard · Dakota Hanka · Masaaki Kuwajima · John Mendenhall · Patrick Parker · Wickliffe Abraham · Kristen Harris · Terrence Sejnowski -
2022 : Using Shannon Information to Probe the Precision of Synaptic Strengths »
Mohammad Samavat · Tom Bartol · Kristen Harris · Terrence Sejnowski -
2021 Workshop: Causal Inference & Machine Learning: Why now? »
Elias Bareinboim · Bernhard Schölkopf · Terrence Sejnowski · Yoshua Bengio · Judea Pearl -
2020 Poster: Biologically Inspired Mechanisms for Adversarial Robustness »
Manish Reddy Vuyyuru · Andrzej Banburski · Nishka Pant · Tomaso Poggio -
2019 : Poster Session »
Pravish Sainath · Mohamed Akrout · Charles Delahunt · Nathan Kutz · Guangyu Robert Yang · Joseph Marino · L F Abbott · Nicolas Vecoven · Damien Ernst · andrew warrington · Michael Kagan · Kyunghyun Cho · Kameron Harris · Leopold Grinberg · John J. Hopfield · Dmitry Krotov · Taliah Muhammad · Erick Cobos · Edgar Walker · Jacob Reimer · Andreas Tolias · Alexander Ecker · Janaki Sheth · Yu Zhang · Maciej Wołczyk · Jacek Tabor · Szymon Maszke · Roman Pogodin · Dane Corneil · Wulfram Gerstner · Baihan Lin · Guillermo Cecchi · Jenna M Reinen · Irina Rish · Guillaume Bellec · Darjan Salaj · Anand Subramoney · Wolfgang Maass · Yueqi Wang · Ari Pakman · Jin Hyung Lee · Liam Paninski · Bryan Tripp · Colin Graber · Alex Schwing · Luke Prince · Gabriel Ocker · Michael Buice · Benjamin Lansdell · Konrad Kording · Jack Lindsey · Terrence Sejnowski · Matthew Farrell · Eric Shea-Brown · Nicolas Farrugia · Victor Nepveu · Jiwoong Im · Kristin Branson · Brian Hu · Ramakrishnan Iyer · Stefan Mihalas · Sneha Aenugu · Hananel Hazan · Sihui Dai · Tan Nguyen · Doris Tsao · Richard Baraniuk · Anima Anandkumar · Hidenori Tanaka · Aran Nayebi · Stephen Baccus · Surya Ganguli · Dean Pospisil · Eilif Muller · Jeffrey S Cheng · Gaël Varoquaux · Kamalaker Dadi · Dimitrios C Gklezakos · Rajesh PN Rao · Anand Louis · Christos Papadimitriou · Santosh Vempala · Naganand Yadati · Daniel Zdeblick · Daniela M Witten · Nicholas Roberts · Vinay Prabhu · Pierre Bellec · Poornima Ramesh · Jakob H Macke · Santiago Cadena · Guillaume Bellec · Franz Scherr · Owen Marschall · Robert Kim · Hannes Rapp · Marcio Fonseca · Oliver Armitage · Jiwoong Im · Thomas Hardcastle · Abhishek Sharma · Wyeth Bair · Adrian Valente · Shane Shang · Merav Stern · Rutuja Patil · Peter Wang · Sruthi Gorantla · Peter Stratton · Tristan Edwards · Jialin Lu · Martin Ester · Yurii Vlasov · Siavash Golkar -
2018 Poster: Gradient Descent for Spiking Neural Networks »
Dongsung Huh · Terrence Sejnowski -
2017 Poster: Do Deep Neural Networks Suffer from Crowding? »
Anna Volokitin · Gemma Roig · Tomaso Poggio -
2016 : From Brains to Bits and Back Again »
Yoshua Bengio · Terrence Sejnowski · Christos H Papadimitriou · Jakob H Macke · Demis Hassabis · Alyson Fletcher · Andreas Tolias · Jascha Sohl-Dickstein · Konrad P Koerding -
2015 Symposium: Brains, Minds and Machines »
Gabriel Kreiman · Tomaso Poggio · Maximilian Nickel -
2015 Poster: Learning with Group Invariant Features: A Kernel Perspective. »
Youssef Mroueh · Stephen Voinea · Tomaso Poggio -
2015 Poster: Learning with a Wasserstein Loss »
Charlie Frogner · Chiyuan Zhang · Hossein Mobahi · Mauricio Araya · Tomaso Poggio -
2013 Poster: Neural representation of action sequences: how far can a simple snippet-matching model take us? »
Cheston Tan · Jedediah M Singer · Thomas Serre · David Sheinberg · Tomaso Poggio -
2013 Session: Oral Session 3 »
Terrence Sejnowski -
2012 Poster: Learning Manifolds with K-Means and K-Flats »
Guillermo D Canas · Tomaso Poggio · Lorenzo Rosasco -
2012 Invited Talk: Suspicious Coincidences in the Brain »
Terrence Sejnowski -
2012 Poster: Multiclass Learning with Simplex Coding »
Youssef Mroueh · Tomaso Poggio · Lorenzo Rosasco · Jean-Jacques Slotine -
2011 Session: Opening Remarks and Awards »
Terrence Sejnowski · Peter Bartlett · Fernando Pereira -
2010 Placeholder: Opening Remarks »
Terrence Sejnowski · Neil D Lawrence -
2010 Talk: Opening Remarks and Awards »
Richard Zemel · Terrence Sejnowski · John Shawe-Taylor -
2009 Workshop: The Curse of Dimensionality Problem: How Can the Brain Solve It? »
Simon Haykin · Terrence Sejnowski · Steven W Zucker -
2009 Poster: On Invariance in Hierarchical Models »
Jake Bouvrie · Lorenzo Rosasco · Tomaso Poggio -
2007 Tutorial: Visual Recognition in Primates and Machines »
Tomaso Poggio -
2006 Workshop: Decoding the neural code »
Eric Thomson · Bill Kristan · Terrence Sejnowski