Timezone: »
Suppose we train an animal in a conditioning experiment. Can one predict how a given animal, under given experimental conditions, would perform the task? Since various factors such as stress, motivation, genetic background, and previous errors in task performance can influence animal behavior, this appears to be a very challenging aim. Reinforcement learning (RL) models have been successful in modeling animal (and human) behavior, but their success has been limited because of uncertainty as to how to set meta-parameters (such as learning rate, exploitation-exploration balance and future reward discount factor) that strongly influence model performance. We show that a simple RL model whose meta-parameters are controlled by an artificial neural network, fed with inputs such as stress, affective phenotype, previous task performance, and even neuromodulatory manipulations, can successfully predict mouse behavior in the "hole-box" - a simple conditioning task. Our results also provide important insights on how stress and anxiety affect animal learning, performance accuracy, and discounting of future rewards, and on how noradrenergic systems can interact with these processes.
Author Information
Gediminas Luksys (University of Basel)
Carmen Sandi (EPFL)
Wulfram Gerstner (EPFL)
Related Events (a corresponding poster, oral, or spotlight)
-
2008 Poster: Stress, noradrenaline, and realistic prediction of mouse behaviour using reinforcement learning »
Wed. Dec 10th through Tue the 9th Room
More from the Same Authors
-
2022 Poster: Mesoscopic modeling of hidden spiking neurons »
Shuqi Wang · Valentin Schmutz · Guillaume Bellec · Wulfram Gerstner -
2022 Poster: Kernel Memory Networks: A Unifying Framework for Memory Modeling »
Georgios Iatropoulos · Johanni Brea · Wulfram Gerstner -
2021 Poster: Local plasticity rules can learn deep representations using self-supervised contrastive predictions »
Bernd Illing · Jean Ventura · Guillaume Bellec · Wulfram Gerstner -
2021 Poster: Fitting summary statistics of neural data with a differentiable spiking network simulator »
Guillaume Bellec · Shuqi Wang · Alireza Modirshanechi · Johanni Brea · Wulfram Gerstner -
2019 : Poster Session »
Pravish Sainath · Mohamed Akrout · Charles Delahunt · Nathan Kutz · Guangyu Robert Yang · Joseph Marino · L F Abbott · Nicolas Vecoven · Damien Ernst · andrew warrington · Michael Kagan · Kyunghyun Cho · Kameron Harris · Leopold Grinberg · John J. Hopfield · Dmitry Krotov · Taliah Muhammad · Erick Cobos · Edgar Walker · Jacob Reimer · Andreas Tolias · Alexander Ecker · Janaki Sheth · Yu Zhang · Maciej Wołczyk · Jacek Tabor · Szymon Maszke · Roman Pogodin · Dane Corneil · Wulfram Gerstner · Baihan Lin · Guillermo Cecchi · Jenna M Reinen · Irina Rish · Guillaume Bellec · Darjan Salaj · Anand Subramoney · Wolfgang Maass · Yueqi Wang · Ari Pakman · Jin Hyung Lee · Liam Paninski · Bryan Tripp · Colin Graber · Alex Schwing · Luke Prince · Gabriel Ocker · Michael Buice · Benjamin Lansdell · Konrad Kording · Jack Lindsey · Terrence Sejnowski · Matthew Farrell · Eric Shea-Brown · Nicolas Farrugia · Victor Nepveu · Jiwoong Im · Kristin Branson · Brian Hu · Ramakrishnan Iyer · Stefan Mihalas · Sneha Aenugu · Hananel Hazan · Sihui Dai · Tan Nguyen · Doris Tsao · Richard Baraniuk · Anima Anandkumar · Hidenori Tanaka · Aran Nayebi · Stephen Baccus · Surya Ganguli · Dean Pospisil · Eilif Muller · Jeffrey S Cheng · Gaël Varoquaux · Kamalaker Dadi · Dimitrios C Gklezakos · Rajesh PN Rao · Anand Louis · Christos Papadimitriou · Santosh Vempala · Naganand Yadati · Daniel Zdeblick · Daniela M Witten · Nicholas Roberts · Vinay Prabhu · Pierre Bellec · Poornima Ramesh · Jakob H Macke · Santiago Cadena · Guillaume Bellec · Franz Scherr · Owen Marschall · Robert Kim · Hannes Rapp · Marcio Fonseca · Oliver Armitage · Jiwoong Im · Thomas Hardcastle · Abhishek Sharma · Wyeth Bair · Adrian Valente · Shane Shang · Merav Stern · Rutuja Patil · Peter Wang · Sruthi Gorantla · Peter Stratton · Tristan Edwards · Jialin Lu · Martin Ester · Yurii Vlasov · Siavash Golkar -
2015 Poster: Attractor Network Dynamics Enable Preplay and Rapid Path Planning in Maze–like Environments »
Dane Corneil · Wulfram Gerstner -
2015 Oral: Attractor Network Dynamics Enable Preplay and Rapid Path Planning in Maze–like Environments »
Dane Corneil · Wulfram Gerstner -
2011 Poster: Variational Learning for Recurrent Spiking Networks »
Danilo J Rezende · Daan Wierstra · Wulfram Gerstner -
2011 Poster: From Stochastic Nonlinear Integrate-and-Fire to Generalized Linear Models »
Skander Mensi · Richard Naud · Wulfram Gerstner -
2010 Poster: Rescaling, thinning or complementing? On goodness-of-fit procedures for point process models and Generalized Linear Models »
Felipe Gerhard · Wulfram Gerstner -
2009 Poster: Code-specific policy gradient rules for spiking neurons »
Henning Sprekeler · Guillaume Hennequin · Wulfram Gerstner -
2007 Poster: An online Hebbian learning rule that performs Independent Component Analysis »
Claudia Clopath · André Longtin · Wulfram Gerstner -
2006 Poster: Effects of Stress and Genotype on Meta-parameter Dynamics in Reinforcement Learning »
Gediminas Luksys · Jeremie Knuesel · Denis Sheynikhovich · Carmen Sandi · Wulfram Gerstner