Timezone: »
Poster
Improved Moves for Truncated Convex Models
Pawan K Mudigonda · Philip Torr
We consider the problem of obtaining the approximate maximum a posteriori estimate of a discrete random field characterized by pairwise potentials that form a truncated convex model. For this problem, we propose an improved st-mincut based move making algorithm. Unlike previous move making approaches, which either provide a loose bound or no bound on the quality of the solution (in terms of the corresponding Gibbs energy), our algorithm achieves the same guarantees as the standard linear programming (LP) relaxation. Compared to previous approaches based on the LP relaxation, e.g. interior-point algorithms or tree-reweighted message passing (TRW), our method is faster as it uses only the efficient st-mincut algorithm in its design. Furthermore, it directly provides us with a primal solution (unlike TRW and other related methods which attempt to solve the dual of the LP). We demonstrate the effectiveness of the proposed approach on both synthetic and standard real data problems. Our analysis also opens up an interesting question regarding the relationship between move making algorithms (such as $\alpha$-expansion and the algorithms presented in this paper) and the randomized rounding schemes used with convex relaxations. We believe that further explorations in this direction would help design efficient algorithms for more complex relaxations.
Author Information
Pawan K Mudigonda (University of Oxford)
Philip Torr (University of Oxford)
Related Events (a corresponding poster, oral, or spotlight)
-
2008 Spotlight: Improved Moves for Truncated Convex Models »
Tue. Dec 9th 11:21 -- 11:22 PM Room
More from the Same Authors
-
2021 : Faking Interpolation Until You Make It »
Alasdair Paren · Rudra Poudel · Pawan K Mudigonda -
2022 Poster: In Defense of the Unitary Scalarization for Deep Multi-Task Learning »
Vitaly Kurin · Alessandro De Palma · Ilya Kostrikov · Shimon Whiteson · Pawan K Mudigonda -
2020 Poster: Hybrid Models for Learning to Branch »
Prateek Gupta · Maxime Gasse · Elias Khalil · Pawan K Mudigonda · Andrea Lodi · Yoshua Bengio -
2018 Poster: A Unified View of Piecewise Linear Neural Network Verification »
Rudy Bunel · Ilker Turkaslan · Philip Torr · Pushmeet Kohli · Pawan K Mudigonda -
2016 Poster: Adaptive Neural Compilation »
Rudy Bunel · Alban Desmaison · Pawan K Mudigonda · Pushmeet Kohli · Philip Torr -
2016 Poster: Learning feed-forward one-shot learners »
Luca Bertinetto · João Henriques · Jack Valmadre · Philip Torr · Andrea Vedaldi -
2016 Poster: DISCO Nets : DISsimilarity COefficients Networks »
Diane Bouchacourt · Pawan K Mudigonda · Sebastian Nowozin -
2011 Poster: Learning Anchor Planes for Classification »
Ziming Zhang · Lubor Ladicky · Philip Torr · Amir Saffari -
2011 Demonstration: Online structured-output learning for real-time object tracking and detection »
Sam Hare · Amir Saffari · Philip Torr -
2007 Oral: An Analysis of Convex Relaxations for MAP Estimation »
Pawan K Mudigonda · Vladimir Kolmogorov · Philip Torr -
2007 Poster: An Analysis of Convex Relaxations for MAP Estimation »
Pawan K Mudigonda · Vladimir Kolmogorov · Philip Torr