Timezone: »

Measures of Clustering Quality: A Working Set of Axioms for Clustering
Shai Ben-David · Margareta Ackerman

Mon Dec 08 08:45 PM -- 12:00 AM (PST) @

Aiming towards the development of a general clustering theory, we discuss abstract axiomatization for clustering. In this respect, we follow up on the work of Kelinberg, (Kleinberg) that showed an impossibility result for such axiomatization. We argue that an impossibility result is not an inherent feature of clustering, but rather, to a large extent, it is an artifact of the specific formalism used in Kleinberg. As opposed to previous work focusing on clustering functions, we propose to address clustering quality measures as the primitive object to be axiomatized. We show that principles like those formulated in Kleinberg's axioms can be readily expressed in the latter framework without leading to inconsistency. A clustering-quality measure is a function that, given a data set and its partition into clusters, returns a non-negative real number representing how strong' orconclusive' the clustering is. We analyze what clustering-quality measures should look like and introduce a set of requirements (`axioms') that express these requirement and extend the translation of Kleinberg's axioms to our framework. We propose several natural clustering quality measures, all satisfying the proposed axioms. In addition, we show that the proposed clustering quality can be computed in polynomial time.

Author Information

Shai Ben-David (University of Waterloo)
Margareta Ackerman (Florida State University)

Related Events (a corresponding poster, oral, or spotlight)

More from the Same Authors