Timezone: »
We consider the problem of multiple kernel learning (MKL), which can be formulated as a convex-concave problem. In the past, two efficient methods, i.e., Semi-Infinite Linear Programming (SILP) and Subgradient Descent (SD), have been proposed for large-scale multiple kernel learning. Despite their success, both methods have their own shortcomings: (a) the SD method utilizes the gradient of only the current solution, and (b) the SILP method does not regularize the approximate solution obtained from the cutting plane model. In this work, we extend the level method, which was originally designed for optimizing non-smooth objective functions, to convex-concave optimization, and apply it to multiple kernel learning. The extended level method overcomes the drawbacks of SILP and SD by exploiting all the gradients computed in past iterations and by regularizing the solution via a projection to a level set. Empirical study with eight UCI datasets shows that the extended level method can significantly improve efficiency by saving on average 91.9% of computational time over the SILP method and 70.3% over the SD method.
Author Information
Zenglin Xu (Harbin Institute of Technology Shenzhen)
Rong Jin (Michigan State University (MSU))
Irwin King (Chinese University of Hong Kong)
Michael R Lyu (CUHK)
More from the Same Authors
-
2021 : Score-based Graph Generative Model for Neutrino Events Classification and Reconstruction »
Yiming Sun · Zixing Song · Irwin King -
2022 : Individual Fairness in Dynamic Financial Networks »
Zixing Song · Yueen Ma · Irwin King -
2022 Poster: Towards Efficient Post-training Quantization of Pre-trained Language Models »
Haoli Bai · Lu Hou · Lifeng Shang · Xin Jiang · Irwin King · Michael R Lyu -
2020 Poster: Revisiting Parameter Sharing for Automatic Neural Channel Number Search »
Jiaxing Wang · Haoli Bai · Jiaxiang Wu · Xupeng Shi · Junzhou Huang · Irwin King · Michael R Lyu · Jian Cheng -
2020 Poster: Unsupervised Text Generation by Learning from Search »
Jingjing Li · Zichao Li · Lili Mou · Xin Jiang · Michael R Lyu · Irwin King -
2018 Poster: Almost Optimal Algorithms for Linear Stochastic Bandits with Heavy-Tailed Payoffs »
Han Shao · Xiaotian Yu · Irwin King · Michael R Lyu -
2018 Spotlight: Almost Optimal Algorithms for Linear Stochastic Bandits with Heavy-Tailed Payoffs »
Han Shao · Xiaotian Yu · Irwin King · Michael R Lyu -
2016 Poster: Distributed Flexible Nonlinear Tensor Factorization »
Shandian Zhe · Kai Zhang · Pengyuan Wang · Kuang-chih Lee · Zenglin Xu · Yuan Qi · Zoubin Ghahramani -
2014 Poster: Extracting Certainty from Uncertainty: Transductive Pairwise Classification from Pairwise Similarities »
Tianbao Yang · Rong Jin -
2014 Poster: Combinatorial Pure Exploration of Multi-Armed Bandits »
Shouyuan Chen · Tian Lin · Irwin King · Michael R Lyu · Wei Chen -
2014 Oral: Combinatorial Pure Exploration of Multi-Armed Bandits »
Shouyuan Chen · Tian Lin · Irwin King · Michael R Lyu · Wei Chen -
2014 Poster: Top Rank Optimization in Linear Time »
Nan Li · Rong Jin · Zhi-Hua Zhou -
2013 Poster: Exact and Stable Recovery of Pairwise Interaction Tensors »
Shouyuan Chen · Michael R Lyu · Irwin King · Zenglin Xu -
2013 Spotlight: Exact and Stable Recovery of Pairwise Interaction Tensors »
Shouyuan Chen · Michael R Lyu · Irwin King · Zenglin Xu -
2013 Poster: Mixed Optimization for Smooth Functions »
Mehrdad Mahdavi · Lijun Zhang · Rong Jin -
2013 Poster: Linear Convergence with Condition Number Independent Access of Full Gradients »
Lijun Zhang · Mehrdad Mahdavi · Rong Jin -
2013 Poster: Stochastic Convex Optimization with Multiple Objectives »
Mehrdad Mahdavi · Tianbao Yang · Rong Jin -
2013 Poster: Speedup Matrix Completion with Side Information: Application to Multi-Label Learning »
Miao Xu · Rong Jin · Zhi-Hua Zhou -
2012 Poster: Nystr{รถ}m Method vs Random Fourier Features: A Theoretical and Empirical Comparison »
Tianbao Yang · Yu-Feng Li · Mehrdad Mahdavi · Rong Jin · Zhi-Hua Zhou -
2012 Poster: Semi-Crowdsourced Clustering: Generalizing Crowd Labeling by Robust Distance Metric Learning »
Jinfeng Yi · Rong Jin · Anil K Jain · Shaili Jain -
2012 Poster: Stochastic Gradient Descent with Only One Projection »
Mehrdad Mahdavi · Tianbao Yang · Rong Jin · Shenghuo Zhu -
2010 Workshop: Machine Learning for Social Computing »
Zenglin Xu · Irwin King · Shenghuo Zhu · Yuan Qi · Rong Yan · John Yen -
2010 Poster: Active Learning by Querying Informative and Representative Examples »
Sheng-Jun Huang · Rong Jin · Zhi-Hua Zhou -
2010 Poster: Multi-label Multiple Kernel Learning by Stochastic Approximation: Application to Visual Object Recognition »
Serhat S Bucak · Rong Jin · Anil K Jain -
2009 Poster: Adaptive Regularization for Transductive Support Vector Machine »
Zenglin Xu · Rong Jin · Jianke Zhu · Irwin King · Michael R Lyu · Zhirong Yang -
2009 Spotlight: Adaptive Regularization for Transductive Support Vector Machine »
Zenglin Xu · Rong Jin · Jianke Zhu · Irwin King · Michael R Lyu · Zhirong Yang -
2009 Poster: Regularized Distance Metric Learning:Theory and Algorithm »
Rong Jin · Shijun Wang · Yang Zhou -
2009 Poster: Learning Bregman Distance Functions and Its Application for Semi-Supervised Clustering »
Lei Wu · Rong Jin · Steven Chu-Hong Hoi · Jianke Zhu · Nenghai Yu -
2009 Poster: DUOL: A Double Updating Approach for Online Learning »
Peilin Zhao · Steven Chu-Hong Hoi · Rong Jin -
2009 Poster: Learning to Rank by Optimizing NDCG Measure »
Hamed Valizadegan · Rong Jin · Ruofei Zhang · Jianchang Mao -
2009 Poster: Heavy-Tailed Symmetric Stochastic Neighbor Embedding »
Zhirong Yang · Irwin King · Zenglin Xu · Erkki Oja -
2009 Spotlight: Heavy-Tailed Symmetric Stochastic Neighbor Embedding »
Zhirong Yang · Irwin King · Zenglin Xu · Erkki Oja -
2009 Spotlight: Learning to Rank by Optimizing NDCG Measure »
Hamed Valizadegan · Rong Jin · Ruofei Zhang · Jianchang Mao -
2008 Poster: Multi-label Multiple Kernel Learning »
Shuiwang Ji · Liang Sun · Rong Jin · Jieping Ye -
2008 Poster: Learning with Consistency between Inductive Functions and Kernels »
Haixuan Yang · Irwin King · Michael R Lyu -
2008 Spotlight: Learning with Consistency between Inductive Functions and Kernels »
Haixuan Yang · Irwin King · Michael R Lyu -
2008 Spotlight: Multi-label Multiple Kernel Learning »
Shuiwang Ji · Liang Sun · Rong Jin · Jieping Ye -
2008 Poster: Semi-supervised Learning with Weakly-Related Unlabeled Data : Towards Better Text Categorization »
Liu Yang · Rong Jin · Rahul Sukthankar -
2008 Spotlight: Semi-supervised Learning with Weakly-Related Unlabeled Data : Towards Better Text Categorization »
Liu Yang · Rong Jin · Rahul Sukthankar -
2007 Poster: Efficient Convex Relaxation for Transductive Support Vector Machine »
Zenglin Xu · Rong Jin · Jianke Zhu · Irwin King · Michael R Lyu -
2006 Poster: Generalized Maximum Margin Clustering and Unsupervised Kernel Learning »
Hamed Valizadegan · Rong Jin