Timezone: »

A computational model of hippocampal function in trace conditioning
Elliot A Ludvig · Richard Sutton · Eric Verbeek · James Kehoe

Wed Dec 10 07:30 PM -- 12:00 AM (PST) @

We present a new reinforcement-learning model for the role of the hippocampus in classical conditioning, focusing on the differences between trace and delay conditioning. In the model, all stimuli are represented both as unindividuated wholes and as a series of temporal elements with varying delays. These two stimulus representations interact, producing different patterns of learning in trace and delay conditioning. The model proposes that hippocampal lesions eliminate long-latency temporal elements, but preserve short-latency temporal elements. For trace conditioning, with no contiguity between stimulus and reward, these long-latency temporal elements are vital to learning adaptively timed responses. For delay conditioning, in contrast, the continued presence of the stimulus supports conditioned responding, and the short-latency elements suppress responding early in the stimulus. In accord with the empirical data, simulated hippocampal damage impairs trace conditioning, but not delay conditioning, at medium-length intervals. With longer intervals, learning is impaired in both procedures, and, with shorter intervals, in neither. In addition, the model makes novel predictions about the response topography with extended stimuli or post-training lesions. These results demonstrate how temporal contiguity, as in delay conditioning, changes the timing problem faced by animals, rendering it both easier and less susceptible to disruption by hippocampal lesions.

Author Information

Elliot A Ludvig (University of Alberta)
Richard Sutton (DeepMind, U Alberta)

Richard S. Sutton is a professor and iCORE chair in the department of computing science at the University of Alberta. He is a fellow of the Association for the Advancement of Artificial Intelligence and co-author of the textbook "Reinforcement Learning: An Introduction" from MIT Press. Before joining the University of Alberta in 2003, he worked in industry at AT&T and GTE Labs, and in academia at the University of Massachusetts. He received a PhD in computer science from the University of Massachusetts in 1984 and a BA in psychology from Stanford University in 1978. Rich's research interests center on the learning problems facing a decision-maker interacting with its environment, which he sees as central to artificial intelligence. He is also interested in animal learning psychology, in connectionist networks, and generally in systems that continually improve their representations and models of the world.

Eric Verbeek
James Kehoe

More from the Same Authors