Timezone: »
Poster
Convergence and Rate of Convergence of A Manifold-Based Dimension Reduction
Andrew Smith · Xiaoming Huo · Hongyuan Zha
We study the convergence and the rate of convergence of a particular manifold-based learning algorithm: local tangent space alignment (LTSA) . The main technical tool is the perturbation analysis on the linear invariant subspace that corresponds to the solution of LTSA. We derive the upper bound for errors under the worst case for LTSA; it naturally leads to a convergence result. We then derive the rate of convergence for LTSA in a special case.
Author Information
Andrew Smith (American Express)
Xiaoming Huo (Georgia Institute of Technology)
Hongyuan Zha (Georgia Tech)
More from the Same Authors
-
2021 Poster: Bridging Explicit and Implicit Deep Generative Models via Neural Stein Estimators »
Qitian Wu · Rui Gao · Hongyuan Zha -
2021 Poster: Random Noise Defense Against Query-Based Black-Box Attacks »
Zeyu Qin · Yanbo Fan · Hongyuan Zha · Baoyuan Wu -
2020 Poster: Learning to Incentivize Other Learning Agents »
Jiachen Yang · Ang Li · Mehrdad Farajtabar · Peter Sunehag · Edward Hughes · Hongyuan Zha -
2020 Poster: Network Diffusions via Neural Mean-Field Dynamics »
Shushan He · Hongyuan Zha · Xiaojing Ye -
2020 Poster: Differentiable Top-k with Optimal Transport »
Yujia Xie · Hanjun Dai · Minshuo Chen · Bo Dai · Tuo Zhao · Hongyuan Zha · Wei Wei · Tomas Pfister -
2020 Poster: Learning Strategic Network Emergence Games »
Rakshit Trivedi · Hongyuan Zha -
2019 Workshop: Learning with Temporal Point Processes »
Manuel Rodriguez · Le Song · Isabel Valera · Yan Liu · Abir De · Hongyuan Zha -
2019 Poster: Meta Learning with Relational Information for Short Sequences »
Yujia Xie · Haoming Jiang · Feng Liu · Tuo Zhao · Hongyuan Zha -
2017 Poster: A Dirichlet Mixture Model of Hawkes Processes for Event Sequence Clustering »
Hongteng Xu · Hongyuan Zha -
2017 Poster: Predicting User Activity Level In Point Processes With Mass Transport Equation »
Yichen Wang · Xiaojing Ye · Hongyuan Zha · Le Song -
2017 Poster: Wasserstein Learning of Deep Generative Point Process Models »
Shuai Xiao · Mehrdad Farajtabar · Xiaojing Ye · Junchi Yan · Xiaokang Yang · Le Song · Hongyuan Zha -
2016 Poster: Multistage Campaigning in Social Networks »
Mehrdad Farajtabar · Xiaojing Ye · Sahar Harati · Le Song · Hongyuan Zha -
2015 Poster: COEVOLVE: A Joint Point Process Model for Information Diffusion and Network Co-evolution »
Mehrdad Farajtabar · Yichen Wang · Manuel Rodriguez · Shuang Li · Hongyuan Zha · Le Song -
2015 Oral: COEVOLVE: A Joint Point Process Model for Information Diffusion and Network Co-evolution »
Mehrdad Farajtabar · Yichen Wang · Manuel Rodriguez · Shuang Li · Hongyuan Zha · Le Song -
2014 Poster: Shaping Social Activity by Incentivizing Users »
Mehrdad Farajtabar · Nan Du · Manuel Gomez Rodriguez · Isabel Valera · Hongyuan Zha · Le Song -
2013 Poster: Scalable Influence Estimation in Continuous-Time Diffusion Networks »
Nan Du · Le Song · Manuel Gomez Rodriguez · Hongyuan Zha -
2013 Oral: Scalable Influence Estimation in Continuous-Time Diffusion Networks »
Nan Du · Le Song · Manuel Gomez Rodriguez · Hongyuan Zha -
2009 Poster: Dirichlet-Bernoulli Alignment: A Generative Model for Multi-Class Multi-Label Multi-Instance Corpora »
Shuang Yang · Hongyuan Zha · Bao-Gang Hu -
2007 Poster: A General Boosting Method and its Application to Learning Ranking Functions for Web Search »
Zhaohui Zheng · Hongyuan Zha · Tong Zhang · Olivier Chapelle · Keke Chen · Gordon Sun