Timezone: »

 
Poster
Predictive Indexing for Fast Search
Sharad Goel · John Langford · Alexander L Strehl

Mon Dec 08 08:45 PM -- 12:00 AM (PST) @ None #None

We tackle the computational problem of query-conditioned search. Given a machine-learned scoring rule and a query distribution, we build a predictive index by precomputing lists of potential results sorted based on an expected score of the result over future queries. The predictive index datastructure supports an anytime algorithm for approximate retrieval of the top elements. The general approach is applicable to webpage ranking, internet advertisement, and approximate nearest neighbor search. It is particularly effective in settings where standard techniques (e.g., inverted indices) are intractable. We experimentally find substantial improvement over existing methods for internet advertisement and approximate nearest neighbors.

Author Information

Sharad Goel (Yahoo! Research)
John Langford (Microsoft Research)

John Langford is a machine learning research scientist, a field which he says "is shifting from an academic discipline to an industrial tool". He is the author of the weblog hunch.net and the principal developer of Vowpal Wabbit. John works at Microsoft Research New York, of which he was one of the founding members, and was previously affiliated with Yahoo! Research, Toyota Technological Institute, and IBM's Watson Research Center. He studied Physics and Computer Science at the California Institute of Technology, earning a double bachelor's degree in 1997, and received his Ph.D. in Computer Science from Carnegie Mellon University in 2002. He was the program co-chair for the 2012 International Conference on Machine Learning.

Alexander L Strehl (Yahoo! Research)

More from the Same Authors