Timezone: »
The notion of "Curse of Dimensionality" was coined by Richard Bellman (1961). It refers to the exponential increase in computing a task of interest when extra dimensions are added to an associated mathematical space. For example, it arises in solving dynamic programming and optimal control problems when the dimension of the state vector is large. It also arises in solving learning problems when a finite number of data samples is used to learn a "state of nature, the distribution of which is infinitely large."
Much has been written on the curse of dimensionality problem in the mathematics and engineering literature. In contrast, little is known on how the human brain solves problems of this kind with relative ease. The key question is: How does the brain do it? To address this basic problem, it may be that we can learn from the mathematics and engineering literature, reformulated in the context of neuroscience.
Author Information
Simon Haykin (Mc Master University)
Terrence Sejnowski (Salk Institute)
Steven W Zucker (Yale University)
More from the Same Authors
-
2022 : Exploring The Precision of Real Intelligence Systems at Synapse Resolution »
Mohammad Samavat · Tom Bartol · Kristen Harris · Terrence Sejnowski -
2022 : Shannon Information of Synaptic Weights Post Induction of Long-Term Potentiation (Learning) is Nearly Maximized »
Mohammad Samavat · Tom Bartol · Cailey Bromer · Jared Bowden · Dusten Hubbard · Dakota Hanka · Masaaki Kuwajima · John Mendenhall · Patrick Parker · Wickliffe Abraham · Kristen Harris · Terrence Sejnowski -
2022 : Using Shannon Information to Probe the Precision of Synaptic Strengths »
Mohammad Samavat · Tom Bartol · Kristen Harris · Terrence Sejnowski -
2021 Workshop: Causal Inference & Machine Learning: Why now? »
Elias Bareinboim · Bernhard Schölkopf · Terrence Sejnowski · Yoshua Bengio · Judea Pearl -
2019 : Poster Session »
Pravish Sainath · Mohamed Akrout · Charles Delahunt · Nathan Kutz · Guangyu Robert Yang · Joseph Marino · L F Abbott · Nicolas Vecoven · Damien Ernst · andrew warrington · Michael Kagan · Kyunghyun Cho · Kameron Harris · Leopold Grinberg · John J. Hopfield · Dmitry Krotov · Taliah Muhammad · Erick Cobos · Edgar Walker · Jacob Reimer · Andreas Tolias · Alexander Ecker · Janaki Sheth · Yu Zhang · Maciej Wołczyk · Jacek Tabor · Szymon Maszke · Roman Pogodin · Dane Corneil · Wulfram Gerstner · Baihan Lin · Guillermo Cecchi · Jenna M Reinen · Irina Rish · Guillaume Bellec · Darjan Salaj · Anand Subramoney · Wolfgang Maass · Yueqi Wang · Ari Pakman · Jin Hyung Lee · Liam Paninski · Bryan Tripp · Colin Graber · Alex Schwing · Luke Prince · Gabriel Ocker · Michael Buice · Benjamin Lansdell · Konrad Kording · Jack Lindsey · Terrence Sejnowski · Matthew Farrell · Eric Shea-Brown · Nicolas Farrugia · Victor Nepveu · Jiwoong Im · Kristin Branson · Brian Hu · Ramakrishnan Iyer · Stefan Mihalas · Sneha Aenugu · Hananel Hazan · Sihui Dai · Tan Nguyen · Doris Tsao · Richard Baraniuk · Anima Anandkumar · Hidenori Tanaka · Aran Nayebi · Stephen Baccus · Surya Ganguli · Dean Pospisil · Eilif Muller · Jeffrey S Cheng · Gaël Varoquaux · Kamalaker Dadi · Dimitrios C Gklezakos · Rajesh PN Rao · Anand Louis · Christos Papadimitriou · Santosh Vempala · Naganand Yadati · Daniel Zdeblick · Daniela M Witten · Nicholas Roberts · Vinay Prabhu · Pierre Bellec · Poornima Ramesh · Jakob H Macke · Santiago Cadena · Guillaume Bellec · Franz Scherr · Owen Marschall · Robert Kim · Hannes Rapp · Marcio Fonseca · Oliver Armitage · Jiwoong Im · Thomas Hardcastle · Abhishek Sharma · Wyeth Bair · Adrian Valente · Shane Shang · Merav Stern · Rutuja Patil · Peter Wang · Sruthi Gorantla · Peter Stratton · Tristan Edwards · Jialin Lu · Martin Ester · Yurii Vlasov · Siavash Golkar -
2018 Poster: Gradient Descent for Spiking Neural Networks »
Dongsung Huh · Terrence Sejnowski -
2016 : From Brains to Bits and Back Again »
Yoshua Bengio · Terrence Sejnowski · Christos H Papadimitriou · Jakob H Macke · Demis Hassabis · Alyson Fletcher · Andreas Tolias · Jascha Sohl-Dickstein · Konrad P Koerding -
2014 Poster: Feedforward Learning of Mixture Models »
Matthew Lawlor · Steven W Zucker -
2014 Oral: Feedforward Learning of Mixture Models »
Matthew Lawlor · Steven W Zucker -
2013 Session: Oral Session 3 »
Terrence Sejnowski -
2012 Invited Talk: Suspicious Coincidences in the Brain »
Terrence Sejnowski -
2011 Session: Opening Remarks and Awards »
Terrence Sejnowski · Peter Bartlett · Fernando Pereira -
2010 Placeholder: Opening Remarks »
Terrence Sejnowski · Neil D Lawrence -
2010 Talk: Opening Remarks and Awards »
Richard Zemel · Terrence Sejnowski · John Shawe-Taylor -
2009 Invited Talk: Cognitive Dynamic Radio »
Simon Haykin -
2008 Workshop: Cortical Microcircuits and their Computational Functions »
Tomaso Poggio · Terrence Sejnowski -
2006 Workshop: Decoding the neural code »
Eric Thomson · Bill Kristan · Terrence Sejnowski