Timezone: »
Manifolds, sparsity, and other low-dimensional geometric models have long been studied and exploited in machine learning, signal processing and computer science. For instance, manifold models lie at the heart of a variety of nonlinear dimensionality reduction techniques. Similarly, sparsity has made an impact in the problems of compression, linear regression, subset selection, graphical model learning, and compressive sensing. Moreover, often motivated by evidence that various neural systems are performing sparse coding, sparse representations have been exploited as an efficient and robust method for encoding a variety of natural signals. In all of these cases the key idea is to exploit low-dimensional models to obtain compact representations of the data. The goal of this workshop is to find commonalities and forge connections between these different fields and to examine how we can we exploit low-dimensional geometric models to help solve common problems in machine learning and beyond.
Author Information
Richard Baraniuk (Rice University)
Volkan Cevher (EPFL)
Mark A Davenport (Rice University)
Piotr Indyk (Massachusetts Institute of Technology)
Bruno Olshausen (Redwood Center/UC Berkeley)
Michael B Wakin (Colorado School of Mines)
More from the Same Authors
-
2022 : Investigating Reproducibility from the Decision Boundary Perspective. »
Gowthami Somepalli · Arpit Bansal · Liam Fowl · Ping-yeh Chiang · Yehuda Dar · Richard Baraniuk · Micah Goldblum · Tom Goldstein -
2022 : Retrieval-based Controllable Molecule Generation »
Jack Wang · Weili Nie · Zhuoran Qiao · Chaowei Xiao · Richard Baraniuk · Anima Anandkumar -
2022 : Exact Visualization of Deep Neural Network Geometry and Decision Boundary »
Ahmed Imtiaz Humayun · Randall Balestriero · Richard Baraniuk -
2022 : Neuromorphic Visual Scene Understanding with Resonator Networks (in brief) »
Alpha Renner · Giacomo Indiveri · Lazar Supic · Andreea Danielescu · Bruno Olshausen · Fritz Sommer · Yulia Sandamirskaya · Edward Frady -
2022 : Disentangling Images with Lie Group Transformations and Sparse Coding »
Ho Yin Chau · Frank Qiu · Yubei Chen · Bruno Olshausen -
2022 : Using Deep Learning and Macroscopic Imaging of Porcine Heart Valve Leaflets to Predict Uniaxial Stress-Strain Responses »
Luis Victor · CJ Barberan · Richard Baraniuk · Jane Grande-Allen -
2023 Poster: Error Bounds for Score Matching Causal Discovery »
Zhenyu Zhu · Francesco Locatello · Volkan Cevher -
2023 Poster: Exponential Lower Bounds for Fictitious Play in Potential Games »
Ioannis Panageas · Nikolas Patris · Stratis Skoulakis · Volkan Cevher -
2023 Poster: Maximum independent set: Self-training through dynamic programming »
Lorenzo Brusca · Lars C.P.M. Quaedvlieg · Stratis Skoulakis · Grigorios Chrysos · Volkan Cevher -
2023 Poster: Stable Nonconvex-Nonconcave Training via Linear Interpolation »
Thomas Pethick · WANYUN XIE · Volkan Cevher -
2023 Poster: Alternation makes the adversary weaker in two-player games »
Volkan Cevher · Ashok Cutkosky · Ali Kavis · Georgios Piliouras · Stratis Skoulakis · Luca Viano -
2023 Poster: Initialization Matters: Privacy-Utility Analysis of Overparameterized Neural Networks »
Jiayuan Ye · Zhenyu Zhu · Fanghui Liu · Reza Shokri · Volkan Cevher -
2023 Poster: On the Convergence of Shallow Transformers »
Yongtao Wu · Fanghui Liu · Grigorios Chrysos · Volkan Cevher -
2023 Poster: Mitigating Over-smoothing in Transformers via Regularized Nonlocal Functionals »
Tam Nguyen · Tan Nguyen · Richard Baraniuk -
2023 Poster: Efficient Online Clustering with Moving Costs »
Dimitris Christou · Stratis Skoulakis · Volkan Cevher -
2023 Workshop: Learning-Based Solutions for Inverse Problems »
Shirin Jalali · christopher metzler · Ajil Jalal · Jon Tamir · Reinhard Heckel · Paul Hand · Arian Maleki · Richard Baraniuk -
2022 : Panel Discussion II: Geometric and topological principles for representations in the brain »
Bruno Olshausen · Kristopher Jensen · Gabriel Kreiman · Manu Madhav · Christian A Shewmake -
2022 : In search of invariance in brains and machines »
Bruno Olshausen -
2022 Poster: Adaptive Stochastic Variance Reduction for Non-convex Finite-Sum Minimization »
Ali Kavis · Stratis Skoulakis · Kimon Antonakopoulos · Leello Tadesse Dadi · Volkan Cevher -
2022 Poster: No-regret learning in games with noisy feedback: Faster rates and adaptivity via learning rate separation »
Yu-Guan Hsieh · Kimon Antonakopoulos · Volkan Cevher · Panayotis Mertikopoulos -
2022 Poster: Generalization Properties of NAS under Activation and Skip Connection Search »
Zhenyu Zhu · Fanghui Liu · Grigorios Chrysos · Volkan Cevher -
2022 Poster: Robustness in deep learning: The good (width), the bad (depth), and the ugly (initialization) »
Zhenyu Zhu · Fanghui Liu · Grigorios Chrysos · Volkan Cevher -
2022 Poster: On the Double Descent of Random Features Models Trained with SGD »
Fanghui Liu · Johan Suykens · Volkan Cevher -
2022 Poster: Identifiability and generalizability from multiple experts in Inverse Reinforcement Learning »
Paul Rolland · Luca Viano · Norman Schürhoff · Boris Nikolov · Volkan Cevher -
2022 Poster: Extrapolation and Spectral Bias of Neural Nets with Hadamard Product: a Polynomial Net Study »
Yongtao Wu · Zhenyu Zhu · Fanghui Liu · Grigorios Chrysos · Volkan Cevher -
2022 Poster: Proximal Point Imitation Learning »
Luca Viano · Angeliki Kamoutsi · Gergely Neu · Igor Krawczuk · Volkan Cevher -
2022 Poster: Understanding Deep Neural Function Approximation in Reinforcement Learning via $\epsilon$-Greedy Exploration »
Fanghui Liu · Luca Viano · Volkan Cevher -
2022 Poster: Sound and Complete Verification of Polynomial Networks »
Elias Abad Rocamora · Mehmet Fatih Sahin · Fanghui Liu · Grigorios Chrysos · Volkan Cevher -
2022 Poster: Extra-Newton: A First Approach to Noise-Adaptive Accelerated Second-Order Methods »
Kimon Antonakopoulos · Ali Kavis · Volkan Cevher -
2022 Poster: Parameters or Privacy: A Provable Tradeoff Between Overparameterization and Membership Inference »
Jasper Tan · Blake Mason · Hamid Javadi · Richard Baraniuk -
2022 Poster: Error Analysis of Tensor-Train Cross Approximation »
Zhen Qin · Alexander Lidiak · Zhexuan Gong · Gongguo Tang · Michael B Wakin · Zhihui Zhu -
2021 Poster: The Effect of the Intrinsic Dimension on the Generalization of Quadratic Classifiers »
Fabian Latorre · Leello Tadesse Dadi · Paul Rolland · Volkan Cevher -
2021 Poster: Convergence of adaptive algorithms for constrained weakly convex optimization »
Ahmet Alacaoglu · Yura Malitsky · Volkan Cevher -
2021 Poster: The Flip Side of the Reweighted Coin: Duality of Adaptive Dropout and Regularization »
Daniel LeJeune · Hamid Javadi · Richard Baraniuk -
2021 Poster: STORM+: Fully Adaptive SGD with Recursive Momentum for Nonconvex Optimization »
Kfir Levy · Ali Kavis · Volkan Cevher -
2021 Poster: Subquadratic Overparameterization for Shallow Neural Networks »
ChaeHwan Song · Ali Ramezani-Kebrya · Thomas Pethick · Armin Eftekhari · Volkan Cevher -
2021 Poster: Sifting through the noise: Universal first-order methods for stochastic variational inequalities »
Kimon Antonakopoulos · Thomas Pethick · Ali Kavis · Panayotis Mertikopoulos · Volkan Cevher -
2021 Poster: Robust Inverse Reinforcement Learning under Transition Dynamics Mismatch »
Luca Viano · Yu-Ting Huang · Parameswaran Kamalaruban · Adrian Weller · Volkan Cevher -
2021 Poster: A first-order primal-dual method with adaptivity to local smoothness »
Maria-Luiza Vladarean · Yura Malitsky · Volkan Cevher -
2020 : Opening Remarks »
Reinhard Heckel · Paul Hand · Soheil Feizi · Lenka Zdeborová · Richard Baraniuk -
2020 Workshop: Workshop on Deep Learning and Inverse Problems »
Reinhard Heckel · Paul Hand · Richard Baraniuk · Lenka Zdeborová · Soheil Feizi -
2020 : Invited speaker: Adaptation and universality in first-order methods, Volkan Cevher »
Volkan Cevher -
2020 Poster: Analytical Probability Distributions and Exact Expectation-Maximization for Deep Generative Networks »
Randall Balestriero · Sebastien PARIS · Richard Baraniuk -
2020 Poster: MomentumRNN: Integrating Momentum into Recurrent Neural Networks »
Tan Nguyen · Richard Baraniuk · Andrea Bertozzi · Stanley Osher · Bao Wang -
2020 Poster: On the Almost Sure Convergence of Stochastic Gradient Descent in Non-Convex Problems »
Panayotis Mertikopoulos · Nadav Hallak · Ali Kavis · Volkan Cevher -
2020 Poster: Robust Reinforcement Learning via Adversarial training with Langevin Dynamics »
Parameswaran Kamalaruban · Yu-Ting Huang · Ya-Ping Hsieh · Paul Rolland · Cheng Shi · Volkan Cevher -
2019 : Poster Session »
Pravish Sainath · Mohamed Akrout · Charles Delahunt · Nathan Kutz · Guangyu Robert Yang · Joseph Marino · L F Abbott · Nicolas Vecoven · Damien Ernst · andrew warrington · Michael Kagan · Kyunghyun Cho · Kameron Harris · Leopold Grinberg · John J. Hopfield · Dmitry Krotov · Taliah Muhammad · Erick Cobos · Edgar Walker · Jacob Reimer · Andreas Tolias · Alexander Ecker · Janaki Sheth · Yu Zhang · Maciej Wołczyk · Jacek Tabor · Szymon Maszke · Roman Pogodin · Dane Corneil · Wulfram Gerstner · Baihan Lin · Guillermo Cecchi · Jenna M Reinen · Irina Rish · Guillaume Bellec · Darjan Salaj · Anand Subramoney · Wolfgang Maass · Yueqi Wang · Ari Pakman · Jin Hyung Lee · Liam Paninski · Bryan Tripp · Colin Graber · Alex Schwing · Luke Prince · Gabriel Ocker · Michael Buice · Benjamin Lansdell · Konrad Kording · Jack Lindsey · Terrence Sejnowski · Matthew Farrell · Eric Shea-Brown · Nicolas Farrugia · Victor Nepveu · Jiwoong Im · Kristin Branson · Brian Hu · Ramakrishnan Iyer · Stefan Mihalas · Sneha Aenugu · Hananel Hazan · Sihui Dai · Tan Nguyen · Doris Tsao · Richard Baraniuk · Anima Anandkumar · Hidenori Tanaka · Aran Nayebi · Stephen Baccus · Surya Ganguli · Dean Pospisil · Eilif Muller · Jeffrey S Cheng · Gaël Varoquaux · Kamalaker Dadi · Dimitrios C Gklezakos · Rajesh PN Rao · Anand Louis · Christos Papadimitriou · Santosh Vempala · Naganand Yadati · Daniel Zdeblick · Daniela M Witten · Nicholas Roberts · Vinay Prabhu · Pierre Bellec · Poornima Ramesh · Jakob H Macke · Santiago Cadena · Guillaume Bellec · Franz Scherr · Owen Marschall · Robert Kim · Hannes Rapp · Marcio Fonseca · Oliver Armitage · Jiwoong Im · Thomas Hardcastle · Abhishek Sharma · Wyeth Bair · Adrian Valente · Shane Shang · Merav Stern · Rutuja Patil · Peter Wang · Sruthi Gorantla · Peter Stratton · Tristan Edwards · Jialin Lu · Martin Ester · Yurii Vlasov · Siavash Golkar -
2019 : Poster and Coffee Break 2 »
Karol Hausman · Kefan Dong · Ken Goldberg · Lihong Li · Lin Yang · Lingxiao Wang · Lior Shani · Liwei Wang · Loren Amdahl-Culleton · Lucas Cassano · Marc Dymetman · Marc Bellemare · Marcin Tomczak · Margarita Castro · Marius Kloft · Marius-Constantin Dinu · Markus Holzleitner · Martha White · Mengdi Wang · Michael Jordan · Mihailo Jovanovic · Ming Yu · Minshuo Chen · Moonkyung Ryu · Muhammad Zaheer · Naman Agarwal · Nan Jiang · Niao He · Nikolaus Yasui · Nikos Karampatziakis · Nino Vieillard · Ofir Nachum · Olivier Pietquin · Ozan Sener · Pan Xu · Parameswaran Kamalaruban · Paul Mineiro · Paul Rolland · Philip Amortila · Pierre-Luc Bacon · Prakash Panangaden · Qi Cai · Qiang Liu · Quanquan Gu · Raihan Seraj · Richard Sutton · Rick Valenzano · Robert Dadashi · Rodrigo Toro Icarte · Roshan Shariff · Roy Fox · Ruosong Wang · Saeed Ghadimi · Samuel Sokota · Sean Sinclair · Sepp Hochreiter · Sergey Levine · Sergio Valcarcel Macua · Sham Kakade · Shangtong Zhang · Sheila McIlraith · Shie Mannor · Shimon Whiteson · Shuai Li · Shuang Qiu · Wai Lok Li · Siddhartha Banerjee · Sitao Luan · Tamer Basar · Thinh Doan · Tianhe Yu · Tianyi Liu · Tom Zahavy · Toryn Klassen · Tuo Zhao · Vicenç Gómez · Vincent Liu · Volkan Cevher · Wesley Suttle · Xiao-Wen Chang · Xiaohan Wei · Xiaotong Liu · Xingguo Li · Xinyi Chen · Xingyou Song · Yao Liu · YiDing Jiang · Yihao Feng · Yilun Du · Yinlam Chow · Yinyu Ye · Yishay Mansour · · Yonathan Efroni · Yongxin Chen · Yuanhao Wang · Bo Dai · Chen-Yu Wei · Harsh Shrivastava · Hongyang Zhang · Qinqing Zheng · SIDDHARTHA SATPATHI · Xueqing Liu · Andreu Vall -
2019 : Opening Remarks »
Reinhard Heckel · Paul Hand · Alex Dimakis · Joan Bruna · Deanna Needell · Richard Baraniuk -
2019 Workshop: Solving inverse problems with deep networks: New architectures, theoretical foundations, and applications »
Reinhard Heckel · Paul Hand · Richard Baraniuk · Joan Bruna · Alex Dimakis · Deanna Needell -
2019 Poster: Distributed Low-rank Matrix Factorization With Exact Consensus »
Zhihui Zhu · Qiuwei Li · Xinshuo Yang · Gongguo Tang · Michael B Wakin -
2019 Poster: Superposition of many models into one »
Brian Cheung · Alexander Terekhov · Yubei Chen · Pulkit Agrawal · Bruno Olshausen -
2019 Poster: An Inexact Augmented Lagrangian Framework for Nonconvex Optimization with Nonlinear Constraints »
Mehmet Fatih Sahin · Armin eftekhari · Ahmet Alacaoglu · Fabian Latorre · Volkan Cevher -
2019 Poster: Stochastic Frank-Wolfe for Composite Convex Minimization »
Francesco Locatello · Alp Yurtsever · Olivier Fercoq · Volkan Cevher -
2019 Poster: The Landscape of Non-convex Empirical Risk with Degenerate Population Risk »
Shuang Li · Gongguo Tang · Michael B Wakin -
2019 Poster: UniXGrad: A Universal, Adaptive Algorithm with Optimal Guarantees for Constrained Optimization »
Ali Kavis · Kfir Y. Levy · Francis Bach · Volkan Cevher -
2019 Poster: Fast and Provable ADMM for Learning with Generative Priors »
Fabian Latorre · Armin eftekhari · Volkan Cevher -
2019 Spotlight: UniXGrad: A Universal, Adaptive Algorithm with Optimal Guarantees for Constrained Optimization »
Ali Kavis · Kfir Y. Levy · Francis Bach · Volkan Cevher -
2019 Spotlight: Fast and Provable ADMM for Learning with Generative Priors »
Fabian Latorre · Armin eftekhari · Volkan Cevher -
2019 Poster: The Geometry of Deep Networks: Power Diagram Subdivision »
Randall Balestriero · Romain Cosentino · Behnaam Aazhang · Richard Baraniuk -
2018 Workshop: Integration of Deep Learning Theories »
Richard Baraniuk · Anima Anandkumar · Stephane Mallat · Ankit Patel · nhật Hồ -
2018 : Panel Discussion »
Richard Baraniuk · Maarten V. de Hoop · Paul A Johnson -
2018 : Finding Mixed Nash Equilibria of Generative Adversarial Networks »
Volkan Cevher -
2018 : Introduction »
Laura Pyrak-Nolte · James Rustad · Richard Baraniuk -
2018 Workshop: Machine Learning for Geophysical & Geochemical Signals »
Laura Pyrak-Nolte · James Rustad · Richard Baraniuk -
2018 Poster: Online Adaptive Methods, Universality and Acceleration »
Kfir Y. Levy · Alp Yurtsever · Volkan Cevher -
2018 Poster: The Sparse Manifold Transform »
Yubei Chen · Dylan Paiton · Bruno Olshausen -
2018 Poster: Mirrored Langevin Dynamics »
Ya-Ping Hsieh · Ali Kavis · Paul Rolland · Volkan Cevher -
2018 Spotlight: Mirrored Langevin Dynamics »
Ya-Ping Hsieh · Ali Kavis · Paul Rolland · Volkan Cevher -
2018 Poster: Adversarially Robust Optimization with Gaussian Processes »
Ilija Bogunovic · Jonathan Scarlett · Stefanie Jegelka · Volkan Cevher -
2018 Spotlight: Adversarially Robust Optimization with Gaussian Processes »
Ilija Bogunovic · Jonathan Scarlett · Stefanie Jegelka · Volkan Cevher -
2017 Workshop: Advances in Modeling and Learning Interactions from Complex Data »
Gautam Dasarathy · Mladen Kolar · Richard Baraniuk -
2017 Poster: Streaming Robust Submodular Maximization: A Partitioned Thresholding Approach »
Slobodan Mitrovic · Ilija Bogunovic · Ashkan Norouzi-Fard · Jakub M Tarnawski · Volkan Cevher -
2017 Poster: Fixed-Rank Approximation of a Positive-Semidefinite Matrix from Streaming Data »
Joel A Tropp · Alp Yurtsever · Madeleine Udell · Volkan Cevher -
2017 Poster: Phase Transitions in the Pooled Data Problem »
Jonathan Scarlett · Volkan Cevher -
2017 Poster: Learned D-AMP: Principled Neural Network based Compressive Image Recovery »
Chris Metzler · Ali Mousavi · Richard Baraniuk -
2017 Poster: Smooth Primal-Dual Coordinate Descent Algorithms for Nonsmooth Convex Optimization »
Ahmet Alacaoglu · Quoc Tran Dinh · Olivier Fercoq · Volkan Cevher -
2016 Workshop: Machine Learning for Education »
Richard Baraniuk · Jiquan Ngiam · Christoph Studer · Phillip Grimaldi · Andrew Lan -
2016 Poster: An Efficient Streaming Algorithm for the Submodular Cover Problem »
Ashkan Norouzi-Fard · Abbas Bazzi · Ilija Bogunovic · Marwa El Halabi · Ya-Ping Hsieh · Volkan Cevher -
2016 Poster: A Probabilistic Framework for Deep Learning »
Ankit Patel · Tan Nguyen · Richard Baraniuk -
2016 Poster: Truncated Variance Reduction: A Unified Approach to Bayesian Optimization and Level-Set Estimation »
Ilija Bogunovic · Jonathan Scarlett · Andreas Krause · Volkan Cevher -
2016 Poster: Stochastic Three-Composite Convex Minimization »
Alp Yurtsever · Bang Cong Vu · Volkan Cevher -
2015 : Low-dimensional inference with high-dimensional data »
Richard Baraniuk -
2015 : Probabilistic Theory of Deep Learning »
Richard Baraniuk -
2015 Poster: Preconditioned Spectral Descent for Deep Learning »
David Carlson · Edo Collins · Ya-Ping Hsieh · Lawrence Carin · Volkan Cevher -
2015 Poster: A Universal Primal-Dual Convex Optimization Framework »
Alp Yurtsever · Quoc Tran Dinh · Volkan Cevher -
2014 Workshop: Discrete Optimization in Machine Learning »
Jeffrey A Bilmes · Andreas Krause · Stefanie Jegelka · S Thomas McCormick · Sebastian Nowozin · Yaron Singer · Dhruv Batra · Volkan Cevher -
2014 Workshop: Human Propelled Machine Learning »
Richard Baraniuk · Michael Mozer · Divyanshu Vats · Christoph Studer · Andrew E Waters · Andrew Lan -
2014 Poster: Constrained convex minimization via model-based excessive gap »
Quoc Tran-Dinh · Volkan Cevher -
2014 Poster: Time--Data Tradeoffs by Aggressive Smoothing »
John J Bruer · Joel A Tropp · Volkan Cevher · Stephen Becker -
2013 Poster: High-Dimensional Gaussian Process Bandits »
Josip Djolonga · Andreas Krause · Volkan Cevher -
2013 Poster: When in Doubt, SWAP: High-Dimensional Sparse Recovery from Correlated Measurements »
Divyanshu Vats · Richard Baraniuk -
2012 Poster: Active Learning of Multi-Index Function Models »
Hemant Tyagi · Volkan Cevher -
2011 Poster: SpaRCS: Recovering low-rank and sparse matrices from compressive measurements »
Andrew E Waters · Aswin C Sankaranarayanan · Richard Baraniuk -
2010 Poster: Group Sparse Coding with a Laplacian Scale Mixture Prior »
Pierre J Garrigues · Bruno Olshausen -
2009 Poster: Learning transport operators for image manifolds »
Jack Culpepper · Bruno Olshausen -
2009 Poster: Learning with Compressible Priors »
Volkan Cevher -
2008 Poster: Learning Transformational Invariants from Time-Varying Natural Images »
Charles Cadieu · Bruno Olshausen -
2008 Poster: Sparse Signal Recovery Using Markov Random Fields »
Volkan Cevher · Marco F Duarte · Chinmay Hegde · Richard Baraniuk -
2008 Spotlight: Sparse Signal Recovery Using Markov Random Fields »
Volkan Cevher · Marco F Duarte · Chinmay Hegde · Richard Baraniuk -
2008 Spotlight: Learning Transformational Invariants from Time-Varying Natural Images »
Charles Cadieu · Bruno Olshausen -
2007 Poster: Learning Horizontal Connections in a Sparse Coding Model of Natural Images »
Pierre Garrigues · Bruno Olshausen -
2007 Poster: Random Projections for Manifold Learning »
Chinmay Hegde · Richard Baraniuk