Timezone: »
Data with temporal (or sequential) structure arise in several applications, such as speaker diarization, human action segmentation, network intrusion detection, DNA copy number analysis, and neuron activity modelling, to name a few. A particularly recurrent temporal structure in real applications is the so-called change-point model, where the data may be temporally partitioned into a sequence of segments delimited by change-points, such that a single model holds within each segment whereas different models hold accross segments. Change-point problems may be tackled from two points of view, corresponding to the practical problem at hand: retrospective (or "a posteriori"), aka multiple change-point estimation, where the whole signal is taken at once and the goal is to estimate the change-point locations, and online (or sequential), aka quickest detection, where data are observed sequentially and the goal is to quickly detect change-points. The purpose of this workshop is to bring together experts from the statistics, machine learning, signal processing communities, to address a broad range of applications from robotics to neuroscience, to discuss and cross-fertilize ideas, and to define the current challenges in temporal segmentation.
Author Information
Stephane Canu (INSA Rouen, LITIS)
Olivier Cappé (CNRS)
Arthur Gretton (Google Deepmind / UCL)
Arthur Gretton is a Professor with the Gatsby Computational Neuroscience Unit at UCL. He received degrees in Physics and Systems Engineering from the Australian National University, and a PhD with Microsoft Research and the Signal Processing and Communications Laboratory at the University of Cambridge. He previously worked at the MPI for Biological Cybernetics, and at the Machine Learning Department, Carnegie Mellon University. Arthur's recent research interests in machine learning include the design and training of generative models, both implicit (e.g. GANs) and explicit (high/infinite dimensional exponential family models), nonparametric hypothesis testing, and kernel methods. He has been an associate editor at IEEE Transactions on Pattern Analysis and Machine Intelligence from 2009 to 2013, an Action Editor for JMLR since April 2013, an Area Chair for NeurIPS in 2008 and 2009, a Senior Area Chair for NeurIPS in 2018, an Area Chair for ICML in 2011 and 2012, and a member of the COLT Program Committee in 2013. Arthur was program chair for AISTATS in 2016 (with Christian Robert), tutorials chair for ICML 2018 (with Ruslan Salakhutdinov), workshops chair for ICML 2019 (with Honglak Lee), program chair for the Dali workshop in 2019 (with Krikamol Muandet and Shakir Mohammed), and co-organsier of the Machine Learning Summer School 2019 in London (with Marc Deisenroth).
Zaid Harchaoui (University of Washington)
Alain Rakotomamonjy (Université de Rouen Normandie Criteo AI Lab)
Jean-Philippe Vert (Owkin / PSL University)
More from the Same Authors
-
2021 : Kernel Methods for Multistage Causal Inference: Mediation Analysis and Dynamic Treatment Effects »
Rahul Singh · Ritsugen Jo · Arthur Gretton -
2021 : Composite Goodness-of-fit Tests with Kernels »
Oscar Key · Tamara Fernandez · Arthur Gretton · Francois-Xavier Briol -
2021 : Discrete Schrödinger Bridges with Applications to Two-Sample Homogeneity Testing »
Zaid Harchaoui · Lang Liu · Soumik Pal -
2021 : Discrete Schrödinger Bridges with Applications to Two-Sample Homogeneity Testing »
Zaid Harchaoui · Lang Liu · Soumik Pal -
2022 : Continuous PDE Dynamics Forecasting with Implicit Neural Representations »
Yuan Yin · Matthieu Kirchmeyer · Jean-Yves Franceschi · Alain Rakotomamonjy · Patrick Gallinari -
2023 Poster: Nonlinear Meta-Learning Can Guarantee Faster Rates »
Dimitri Meunier · Zhu Li · Arthur Gretton · Samory Kpotufe -
2023 Poster: MMD-Fuse: Learning and Combining Kernels for Two-Sample Testing Without Data Splitting »
Felix Biggs · Antonin Schrab · Arthur Gretton -
2023 Poster: Unifying GANs and Score-Based Diffusion as Generative Particle Models »
Jean-Yves Franceschi · Mike Gartrell · Ludovic Dos Santos · Thibaut Issenhuth · Emmanuel de Bézenac · Mickael Chen · Alain Rakotomamonjy -
2023 Poster: MMD Aggregated Two-Sample Test »
Antonin Schrab · Ilmun Kim · Mélisande Albert · Béatrice Laurent · Benjamin Guedj · Arthur Gretton -
2022 Poster: Benchopt: Reproducible, efficient and collaborative optimization benchmarks »
Thomas Moreau · Mathurin Massias · Alexandre Gramfort · Pierre Ablin · Pierre-Antoine Bannier · Benjamin Charlier · Mathieu Dagréou · Tom Dupre la Tour · Ghislain DURIF · Cassio F. Dantas · Quentin Klopfenstein · Johan Larsson · En Lai · Tanguy Lefort · Benoît Malézieux · Badr MOUFAD · Binh T. Nguyen · Alain Rakotomamonjy · Zaccharie Ramzi · Joseph Salmon · Samuel Vaiter -
2022 Poster: Optimal Rates for Regularized Conditional Mean Embedding Learning »
Zhu Li · Dimitri Meunier · Mattes Mollenhauer · Arthur Gretton -
2022 Poster: Diverse Weight Averaging for Out-of-Distribution Generalization »
Alexandre Rame · Matthieu Kirchmeyer · Thibaud Rahier · Alain Rakotomamonjy · Patrick Gallinari · Matthieu Cord -
2022 Poster: KSD Aggregated Goodness-of-fit Test »
Antonin Schrab · Benjamin Guedj · Arthur Gretton -
2022 Poster: Efficient Aggregated Kernel Tests using Incomplete $U$-statistics »
Antonin Schrab · Ilmun Kim · Benjamin Guedj · Arthur Gretton -
2021 : Discrete Schrödinger Bridges with Applications to Two-Sample Homogeneity Testing »
Zaid Harchaoui · Lang Liu · Soumik Pal -
2021 Workshop: Machine Learning Meets Econometrics (MLECON) »
David Bruns-Smith · Arthur Gretton · Limor Gultchin · Niki Kilbertus · Krikamol Muandet · Evan Munro · Angela Zhou -
2021 Poster: KALE Flow: A Relaxed KL Gradient Flow for Probabilities with Disjoint Support »
Pierre Glaser · Michael Arbel · Arthur Gretton -
2021 Poster: Stochastic optimization under time drift: iterate averaging, step-decay schedules, and high probability guarantees »
Joshua Cutler · Dmitriy Drusvyatskiy · Zaid Harchaoui -
2021 Poster: Divergence Frontiers for Generative Models: Sample Complexity, Quantization Effects, and Frontier Integrals »
Lang Liu · Krishna Pillutla · Sean Welleck · Sewoong Oh · Yejin Choi · Zaid Harchaoui -
2021 Poster: Photonic Differential Privacy with Direct Feedback Alignment »
Ruben Ohana · Hamlet Medina · Julien Launay · Alessandro Cappelli · Iacopo Poli · Liva Ralaivola · Alain Rakotomamonjy -
2021 Poster: Framing RNN as a kernel method: A neural ODE approach »
Adeline Fermanian · Pierre Marion · Jean-Philippe Vert · Gérard Biau -
2021 Poster: Deep Proxy Causal Learning and its Application to Confounded Bandit Policy Evaluation »
Ritsugen Jo · Heishiro Kanagawa · Arthur Gretton -
2021 Poster: A/B/n Testing with Control in the Presence of Subpopulations »
Yoan Russac · Christina Katsimerou · Dennis Bohle · Olivier Cappé · Aurélien Garivier · Wouter Koolen -
2021 Poster: Self-Supervised Learning with Kernel Dependence Maximization »
Yazhe Li · Roman Pogodin · Danica J. Sutherland · Arthur Gretton -
2021 Poster: MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers »
Krishna Pillutla · Swabha Swayamdipta · Rowan Zellers · John Thickstun · Sean Welleck · Yejin Choi · Zaid Harchaoui -
2021 Poster: Reverse-Complement Equivariant Networks for DNA Sequences »
Vincent Mallet · Jean-Philippe Vert -
2021 Oral: MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers »
Krishna Pillutla · Swabha Swayamdipta · Rowan Zellers · John Thickstun · Sean Welleck · Yejin Choi · Zaid Harchaoui -
2021 Oral: Framing RNN as a kernel method: A neural ODE approach »
Adeline Fermanian · Pierre Marion · Jean-Philippe Vert · Gérard Biau -
2020 Poster: A Non-Asymptotic Analysis for Stein Variational Gradient Descent »
Anna Korba · Adil Salim · Michael Arbel · Giulia Luise · Arthur Gretton -
2020 Poster: A kernel test for quasi-independence »
Tamara Fernandez · Wenkai Xu · Marc Ditzhaus · Arthur Gretton -
2020 Spotlight: A kernel test for quasi-independence »
Tamara Fernandez · Wenkai Xu · Marc Ditzhaus · Arthur Gretton -
2019 Poster: Screening Sinkhorn Algorithm for Regularized Optimal Transport »
Mokhtar Z. Alaya · Maxime Berar · Gilles Gasso · Alain Rakotomamonjy -
2019 Poster: Singleshot : a scalable Tucker tensor decomposition »
Abraham Traore · Maxime Berar · Alain Rakotomamonjy -
2019 Poster: Exponential Family Estimation via Adversarial Dynamics Embedding »
Bo Dai · Zhen Liu · Hanjun Dai · Niao He · Arthur Gretton · Le Song · Dale Schuurmans -
2019 Poster: Maximum Mean Discrepancy Gradient Flow »
Michael Arbel · Anna Korba · Adil Salim · Arthur Gretton -
2019 Poster: Weighted Linear Bandits for Non-Stationary Environments »
Yoan Russac · Claire Vernade · Olivier Cappé -
2019 Poster: Kernel Instrumental Variable Regression »
Rahul Singh · Maneesh Sahani · Arthur Gretton -
2019 Oral: Kernel Instrumental Variable Regression »
Rahul Singh · Maneesh Sahani · Arthur Gretton -
2019 Tutorial: Interpretable Comparison of Distributions and Models »
Wittawat Jitkrittum · Danica J. Sutherland · Arthur Gretton -
2018 Poster: Informative Features for Model Comparison »
Wittawat Jitkrittum · Heishiro Kanagawa · Patsorn Sangkloy · James Hays · Bernhard Schölkopf · Arthur Gretton -
2018 Poster: Relating Leverage Scores and Density using Regularized Christoffel Functions »
Edouard Pauwels · Francis Bach · Jean-Philippe Vert -
2018 Poster: BRUNO: A Deep Recurrent Model for Exchangeable Data »
Iryna Korshunova · Jonas Degrave · Ferenc Huszar · Yarin Gal · Arthur Gretton · Joni Dambre -
2018 Poster: On gradient regularizers for MMD GANs »
Michael Arbel · Danica J. Sutherland · Mikołaj Bińkowski · Arthur Gretton -
2017 : Conditional Densities and Efficient Models in Infinite Exponential Families »
Arthur Gretton -
2017 Poster: A Linear-Time Kernel Goodness-of-Fit Test »
Wittawat Jitkrittum · Wenkai Xu · Zoltan Szabo · Kenji Fukumizu · Arthur Gretton -
2017 Oral: A Linear-Time Kernel Goodness-of-Fit Test »
Wittawat Jitkrittum · Wenkai Xu · Zoltan Szabo · Kenji Fukumizu · Arthur Gretton -
2017 Poster: Joint distribution optimal transportation for domain adaptation »
Nicolas Courty · Rémi Flamary · Amaury Habrard · Alain Rakotomamonjy -
2016 Workshop: Adaptive and Scalable Nonparametric Methods in Machine Learning »
Aaditya Ramdas · Arthur Gretton · Bharath Sriperumbudur · Han Liu · John Lafferty · Samory Kpotufe · Zoltán Szabó -
2016 : Discussion panel »
Ian Goodfellow · Soumith Chintala · Arthur Gretton · Sebastian Nowozin · Aaron Courville · Yann LeCun · Emily Denton -
2016 : Learning features to distinguish distributions »
Arthur Gretton -
2016 Oral: Interpretable Distribution Features with Maximum Testing Power »
Wittawat Jitkrittum · Zoltán Szabó · Kacper P Chwialkowski · Arthur Gretton -
2016 Poster: Structure-Blind Signal Recovery »
Dmitry Ostrovsky · Zaid Harchaoui · Anatoli Juditsky · Arkadi S Nemirovski -
2016 Poster: Interpretable Distribution Features with Maximum Testing Power »
Wittawat Jitkrittum · Zoltán Szabó · Kacper P Chwialkowski · Arthur Gretton -
2015 : Learning from Rankings »
Jean-Philippe Vert -
2015 : *Arthur Gretton* Learning with Probabilities as Inputs, Using Kernels »
Arthur Gretton -
2015 Poster: Gradient-free Hamiltonian Monte Carlo with Efficient Kernel Exponential Families »
Heiko Strathmann · Dino Sejdinovic · Samuel Livingstone · Zoltan Szabo · Arthur Gretton -
2015 Poster: A Universal Catalyst for First-Order Optimization »
Hongzhou Lin · Julien Mairal · Zaid Harchaoui -
2015 Poster: Semi-Proximal Mirror-Prox for Nonsmooth Composite Minimization »
Niao He · Zaid Harchaoui -
2015 Poster: Fast Two-Sample Testing with Analytic Representations of Probability Measures »
Kacper P Chwialkowski · Aaditya Ramdas · Dino Sejdinovic · Arthur Gretton -
2014 Workshop: Modern Nonparametrics 3: Automating the Learning Pipeline »
Eric Xing · Mladen Kolar · Arthur Gretton · Samory Kpotufe · Han Liu · Zoltán Szabó · Alan Yuille · Andrew G Wilson · Ryan Tibshirani · Sasha Rakhlin · Damian Kozbur · Bharath Sriperumbudur · David Lopez-Paz · Kirthevasan Kandasamy · Francesco Orabona · Andreas Damianou · Wacha Bounliphone · Yanshuai Cao · Arijit Das · Yingzhen Yang · Giulia DeSalvo · Dmitry Storcheus · Roberto Valerio -
2014 Workshop: OPT2014: Optimization for Machine Learning »
Zaid Harchaoui · Suvrit Sra · Alekh Agarwal · Martin Jaggi · Miro Dudik · Aaditya Ramdas · Jean Lasserre · Yoshua Bengio · Amir Beck -
2014 Poster: A Wild Bootstrap for Degenerate Kernel Tests »
Kacper P Chwialkowski · Dino Sejdinovic · Arthur Gretton -
2014 Oral: A Wild Bootstrap for Degenerate Kernel Tests »
Kacper P Chwialkowski · Dino Sejdinovic · Arthur Gretton -
2014 Poster: Convolutional Kernel Networks »
Julien Mairal · Piotr Koniusz · Zaid Harchaoui · Cordelia Schmid -
2014 Poster: Tight convex relaxations for sparse matrix factorization »
Emile Richard · Guillaume R Obozinski · Jean-Philippe Vert -
2014 Spotlight: Convolutional Kernel Networks »
Julien Mairal · Piotr Koniusz · Zaid Harchaoui · Cordelia Schmid -
2013 Workshop: Machine Learning in Computational Biology »
Jean-Philippe Vert · Anna Goldenberg · Sara Mostafavi · Oliver Stegle -
2013 Workshop: New Directions in Transfer and Multi-Task: Learning Across Domains and Tasks »
Urun Dogan · Marius Kloft · Tatiana Tommasi · Francesco Orabona · Massimiliano Pontil · Sinno Jialin Pan · Shai Ben-David · Arthur Gretton · Fei Sha · Marco Signoretto · Rajhans Samdani · Yun-Qian Miao · Mohammad Gheshlaghi azar · Ruth Urner · Christoph Lampert · Jonathan How -
2013 Workshop: Greedy Algorithms, Frank-Wolfe and Friends - A modern perspective »
Martin Jaggi · Zaid Harchaoui · Federico Pierucci -
2013 Workshop: Modern Nonparametric Methods in Machine Learning »
Arthur Gretton · Mladen Kolar · Samory Kpotufe · John Lafferty · Han Liu · Bernhard Schölkopf · Alexander Smola · Rob Nowak · Mikhail Belkin · Lorenzo Rosasco · peter bickel · Yue Zhao -
2013 Poster: B-test: A Non-parametric, Low Variance Kernel Two-sample Test »
Wojciech Zaremba · Arthur Gretton · Matthew B Blaschko -
2013 Poster: A Kernel Test for Three-Variable Interactions »
Dino Sejdinovic · Arthur Gretton · Wicher Bergsma -
2013 Oral: A Kernel Test for Three-Variable Interactions »
Dino Sejdinovic · Arthur Gretton · Wicher Bergsma -
2012 Workshop: Confluence between Kernel Methods and Graphical Models »
Le Song · Arthur Gretton · Alexander Smola -
2012 Workshop: Modern Nonparametric Methods in Machine Learning »
Sivaraman Balakrishnan · Arthur Gretton · Mladen Kolar · John Lafferty · Han Liu · Tong Zhang -
2012 Workshop: Machine Learning in Computational Biology »
Jean-Philippe Vert · Anna Goldenberg · Christina Leslie -
2012 Poster: Multiple Operator-valued Kernel Learning »
Hachem Kadri · Alain Rakotomamonjy · Francis Bach · philippe preux -
2012 Session: Oral Session 9 »
Jean-Philippe Vert -
2012 Poster: Optimal kernel choice for large-scale two-sample tests »
Arthur Gretton · Bharath Sriperumbudur · Dino Sejdinovic · Heiko Strathmann · Sivaraman Balakrishnan · Massimiliano Pontil · Kenji Fukumizu -
2011 Workshop: Machine Learning in Computational Biology »
Jean-Philippe Vert · Gunnar Rätsch · Yanjun Qi · Tomer Hertz · Anna Goldenberg · Christina Leslie -
2011 Poster: Kernel Bayes' Rule »
Kenji Fukumizu · Le Song · Arthur Gretton -
2010 Workshop: Low-rank Methods for Large-scale Machine Learning »
Arthur Gretton · Michael W Mahoney · Mehryar Mohri · Ameet S Talwalkar -
2010 Workshop: New Directions in Multiple Kernel Learning »
Marius Kloft · Ulrich Rueckert · Cheng Soon Ong · Alain Rakotomamonjy · Soeren Sonnenburg · Francis Bach -
2010 Workshop: Machine Learning in Computational Biology »
Gunnar Rätsch · Jean-Philippe Vert · Tomer Hertz · Yanjun Qi -
2010 Poster: Parametric Bandits: The Generalized Linear Case »
Sarah Filippi · Olivier Cappé · Aurélien Garivier · Csaba Szepesvari -
2010 Poster: Fast detection of multiple change-points shared by many signals using group LARS »
Jean-Philippe Vert · Kevin Bleakley -
2009 Workshop: Large-Scale Machine Learning: Parallelism and Massive Datasets »
Alexander Gray · Arthur Gretton · Alexander Smola · Joseph E Gonzalez · Carlos Guestrin -
2009 Workshop: Machine Learning in Computational Biology »
Gal Chechik · Tomer Hertz · William S Noble · Yanjun Qi · Jean-Philippe Vert · Alexander Zien -
2009 Mini Symposium: Machine Learning in Computational Biology »
Yanjun Qi · Jean-Philippe Vert · Gal Chechik · Alexander Zien · Tomer Hertz · William S Noble -
2009 Session: Oral session 10: Neural Modeling and Imaging »
Arthur Gretton -
2009 Poster: Kernel Choice and Classifiability for RKHS Embeddings of Probability Distributions »
Bharath Sriperumbudur · Kenji Fukumizu · Arthur Gretton · Gert Lanckriet · Bernhard Schölkopf -
2009 Oral: Kernel Choice and Classifiability for RKHS Embeddings of Probability Distributions »
Bharath Sriperumbudur · Kenji Fukumizu · Arthur Gretton · Gert Lanckriet · Bernhard Schölkopf -
2009 Poster: Nonlinear directed acyclic structure learning with weakly additive noise models »
Robert E Tillman · Arthur Gretton · Peter Spirtes -
2009 Poster: A Fast, Consistent Kernel Two-Sample Test »
Arthur Gretton · Kenji Fukumizu · Zaid Harchaoui · Bharath Sriperumbudur -
2009 Poster: White Functionals for Anomaly Detection in Dynamical Systems »
Marco Cuturi · Jean-Philippe Vert · Alexandre d'Aspremont -
2009 Spotlight: A Fast, Consistent Kernel Two-Sample Test »
Arthur Gretton · Kenji Fukumizu · Zaid Harchaoui · Bharath Sriperumbudur -
2008 Workshop: Kernel Learning: Automatic Selection of Optimal Kernels »
Corinna Cortes · Arthur Gretton · Gert Lanckriet · Mehryar Mohri · Afshin Rostamizadeh -
2008 Poster: Clustered Multi-Task Learning: A Convex Formulation »
Laurent Jacob · Francis Bach · Jean-Philippe Vert -
2008 Poster: Kernel Measures of Independence for non-iid Data »
Xinhua Zhang · Le Song · Arthur Gretton · Alexander Smola -
2008 Poster: Characteristic Kernels on Groups and Semigroups »
Kenji Fukumizu · Bharath Sriperumbudur · Arthur Gretton · Bernhard Schölkopf -
2008 Spotlight: Clustered Multi-Task Learning: A Convex Formulation »
Laurent Jacob · Francis Bach · Jean-Philippe Vert -
2008 Spotlight: Kernel Measures of Independence for non-iid Data »
Xinhua Zhang · Le Song · Arthur Gretton · Alexander Smola -
2008 Oral: Characteristic Kernels on Groups and Semigroups »
Kenji Fukumizu · Bharath Sriperumbudur · Arthur Gretton · Bernhard Schölkopf -
2008 Poster: Suppport Vector Machines with a Reject Option »
Yves Grandvalet · Joseph Keshet · Alain Rakotomamonjy · Stephane Canu -
2008 Session: Oral session 2: Sensorimotor Control »
Arthur Gretton -
2008 Poster: Kernel Change-point Analysis »
Zaid Harchaoui · Francis Bach · Eric Moulines -
2008 Poster: Learning Taxonomies by Dependence Maximization »
Matthew B Blaschko · Arthur Gretton -
2007 Workshop: Representations and Inference on Probability Distributions »
Kenji Fukumizu · Arthur Gretton · Alexander Smola -
2007 Spotlight: Kernel Measures of Conditional Dependence »
Kenji Fukumizu · Arthur Gretton · Xiaohai Sun · Bernhard Schölkopf -
2007 Poster: Kernel Measures of Conditional Dependence »
Kenji Fukumizu · Arthur Gretton · Xiaohai Sun · Bernhard Schölkopf -
2007 Spotlight: A Kernel Statistical Test of Independence »
Arthur Gretton · Kenji Fukumizu · Choon Hui Teo · Le Song · Bernhard Schölkopf · Alexander Smola -
2007 Oral: Colored Maximum Variance Unfolding »
Le Song · Alexander Smola · Karsten Borgwardt · Arthur Gretton -
2007 Poster: Colored Maximum Variance Unfolding »
Le Song · Alexander Smola · Karsten Borgwardt · Arthur Gretton -
2007 Poster: A Kernel Statistical Test of Independence »
Arthur Gretton · Kenji Fukumizu · Choon Hui Teo · Le Song · Bernhard Schölkopf · Alexander Smola -
2007 Poster: Testing for Homogeneity with Kernel Fisher Discriminant Analysis »
Zaid Harchaoui · Francis Bach · Moulines Eric -
2007 Poster: DIFFRAC: a discriminative and flexible framework for clustering »
Francis Bach · Zaid Harchaoui -
2007 Poster: Catching Change-points with Lasso »
Zaid Harchaoui · Céline Lévy-Leduc -
2006 Poster: A Kernel Method for the Two-Sample-Problem »
Arthur Gretton · Karsten Borgwardt · Malte J Rasch · Bernhard Schölkopf · Alexander Smola -
2006 Poster: Correcting Sample Selection Bias by Unlabeled Data »
Jiayuan Huang · Alexander Smola · Arthur Gretton · Karsten Borgwardt · Bernhard Schölkopf -
2006 Spotlight: Correcting Sample Selection Bias by Unlabeled Data »
Jiayuan Huang · Alexander Smola · Arthur Gretton · Karsten Borgwardt · Bernhard Schölkopf -
2006 Talk: A Kernel Method for the Two-Sample-Problem »
Arthur Gretton · Karsten Borgwardt · Malte J Rasch · Bernhard Schölkopf · Alexander Smola