Timezone: »
A new algorithm for regret minimization in online convex optimization is described. The regret of the algorithm after T time periods is almost the minimum possible. However, in n-dimensional space, during each iteration the new algorithm essentially solves a system of linear equations of order n, whereas previous algorithms have to solve some constrained convex optimization problem in n dimensions and possibly many constraints. Thus, the new algorithm improves the running time by a factor of at least the square root of n, and much more for nontrivial domains. This new method is also adaptive, in the sense that the regret bounds hold not only for the time periods 1,...,T but also for every sub-interval s, s+1, ... , t.
Author Information
Elad Hazan (Princeton University)
Nimrod Megiddo (IBM Almaden Research Center)
Related Events (a corresponding poster, oral, or spotlight)
-
2009 Spotlight: An Efficient Interior-Point Method for Minimum-Regret Learning in Online Convex Optimization »
Tue Dec 8th 11:23 -- 11:24 PM Room None
More from the Same Authors
-
2020 Poster: Geometric Exploration for Online Control »
Orestis Plevrakis · Elad Hazan -
2020 Poster: Non-Stochastic Control with Bandit Feedback »
Paula Gradu · John Hallman · Elad Hazan -
2020 Poster: Online Agnostic Boosting via Regret Minimization »
Nataly Brukhim · Xinyi Chen · Elad Hazan · Shay Moran -
2019 Poster: Private Learning Implies Online Learning: An Efficient Reduction »
Alon Gonen · Elad Hazan · Shay Moran -
2019 Spotlight: Private Learning Implies Online Learning: An Efficient Reduction »
Alon Gonen · Elad Hazan · Shay Moran -
2019 Poster: Logarithmic Regret for Online Control »
Naman Agarwal · Elad Hazan · Karan Singh -
2019 Oral: Logarithmic Regret for Online Control »
Naman Agarwal · Elad Hazan · Karan Singh -
2018 Poster: Online Improper Learning with an Approximation Oracle »
Elad Hazan · Wei Hu · Yuanzhi Li · Zhiyuan Li -
2018 Poster: Online Learning of Quantum States »
Scott Aaronson · Xinyi Chen · Elad Hazan · Satyen Kale · Ashwin Nayak -
2018 Poster: Spectral Filtering for General Linear Dynamical Systems »
Elad Hazan · Holden Lee · Karan Singh · Cyril Zhang · Yi Zhang -
2018 Oral: Spectral Filtering for General Linear Dynamical Systems »
Elad Hazan · Holden Lee · Karan Singh · Cyril Zhang · Yi Zhang -
2017 Poster: Linear Convergence of a Frank-Wolfe Type Algorithm over Trace-Norm Balls »
Zeyuan Allen-Zhu · Elad Hazan · Wei Hu · Yuanzhi Li -
2017 Poster: Learning Linear Dynamical Systems via Spectral Filtering »
Elad Hazan · Karan Singh · Cyril Zhang -
2017 Spotlight: Online Learning of Linear Dynamical Systems »
Elad Hazan · Karan Singh · Cyril Zhang -
2017 Spotlight: Linear Convergence of a Frank-Wolfe Type Algorithm over Trace-Norm Balls »
Zeyuan Allen-Zhu · Elad Hazan · Wei Hu · Yuanzhi Li -
2016 Poster: Optimal Black-Box Reductions Between Optimization Objectives »
Zeyuan Allen-Zhu · Elad Hazan -
2016 Poster: A Non-generative Framework and Convex Relaxations for Unsupervised Learning »
Elad Hazan · Tengyu Ma -
2016 Poster: The Limits of Learning with Missing Data »
Brian Bullins · Elad Hazan · Tomer Koren -
2015 Poster: Online Learning for Adversaries with Memory: Price of Past Mistakes »
Oren Anava · Elad Hazan · Shie Mannor -
2015 Poster: Beyond Convexity: Stochastic Quasi-Convex Optimization »
Elad Hazan · Kfir Y. Levy · Shai Shalev-Shwartz -
2015 Poster: Online Gradient Boosting »
Alina Beygelzimer · Elad Hazan · Satyen Kale · Haipeng Luo -
2009 Poster: On Stochastic and Worst-case Models for Investing »
Elad Hazan · Satyen Kale -
2009 Oral: On Stochastic and Worst-case Models for Investing »
Elad Hazan · Satyen Kale -
2009 Poster: Beyond Convexity: Online Submodular Minimization »
Elad Hazan · Satyen Kale -
2007 Oral: Adaptive Online Gradient Descent »
Peter Bartlett · Elad Hazan · Sasha Rakhlin -
2007 Poster: Adaptive Online Gradient Descent »
Peter Bartlett · Elad Hazan · Sasha Rakhlin -
2007 Poster: Computational Equivalence of Fixed Points and No Regret Algorithms, and Convergence to Equilibria »
Elad Hazan · Satyen Kale