Timezone: »
By adding a spatial regularization kernel to a standard loss function formulation of the boosting problem, we develop a framework for spatially informed boosting. From this regularized loss framework we derive an efficient boosting algorithm that uses additional weights/priors on the base classifiers. We prove that the proposed algorithm exhibits a ``grouping effect, which encourages the selection of all spatially local, discriminative base classifiers. The algorithms primary advantage is in applications where the trained classifier is used to identify the spatial pattern of discriminative information, e.g. the voxel selection problem in fMRI. We demonstrate the algorithms performance on various data sets.
Author Information
Zhen James Xiang (Princeton University)
Yongxin Xi (Princeton University)
Uri Hasson (Princeton University)
Peter J. Ramadge (Princeton)
Related Events (a corresponding poster, oral, or spotlight)
-
2009 Spotlight: Boosting with Spatial Regularization »
Tue. Dec 8th 11:27 -- 11:28 PM Room
More from the Same Authors
-
2021 Spotlight: Safe Reinforcement Learning with Natural Language Constraints »
Tsung-Yen Yang · Michael Y Hu · Yinlam Chow · Peter J. Ramadge · Karthik Narasimhan -
2021 : ProBF: Probabilistic Safety Certificates with Barrier Functions »
Sulin Liu · Athindran Ramesh Kumar · Jaime Fisac · Ryan Adams · Peter J. Ramadge -
2022 Workshop: Memory in Artificial and Real Intelligence (MemARI) »
Mariya Toneva · Javier Turek · Vy Vo · Shailee Jain · Kenneth Norman · Alexander Huth · Uri Hasson · Mihai Capotă -
2022 Poster: KERPLE: Kernelized Relative Positional Embedding for Length Extrapolation »
Ta-Chung Chi · Ting-Han Fan · Peter J. Ramadge · Alexander Rudnicky -
2022 Poster: Learning Physics Constrained Dynamics Using Autoencoders »
Tsung-Yen Yang · Justinian Rosca · Karthik Narasimhan · Peter J. Ramadge -
2021 Poster: Safe Reinforcement Learning with Natural Language Constraints »
Tsung-Yen Yang · Michael Y Hu · Yinlam Chow · Peter J. Ramadge · Karthik Narasimhan -
2020 Poster: Task-Agnostic Amortized Inference of Gaussian Process Hyperparameters »
Sulin Liu · Xingyuan Sun · Peter J. Ramadge · Ryan Adams -
2015 Poster: A Reduced-Dimension fMRI Shared Response Model »
Cameron Po-Hsuan Chen · Janice Chen · Yaara Yeshurun · Uri Hasson · James Haxby · Peter J. Ramadge -
2015 Oral: A Reduced-Dimension fMRI Shared Response Model »
Cameron Po-Hsuan Chen · Janice Chen · Yaara Yeshurun · Uri Hasson · James Haxby · Peter J. Ramadge -
2012 Poster: Kernel Hyperalignment »
Alexander Lorbert · Peter J. Ramadge -
2012 Spotlight: Kernel Hyperalignment »
Alexander Lorbert · Peter J. Ramadge -
2011 Poster: Learning Sparse Representations of High Dimensional Data on Large Scale Dictionaries »
Zhen James Xiang · Hao Xu · Peter J. Ramadge -
2011 Oral: Learning Sparse Representations of High Dimensional Data on Large Scale Dictionaries »
Zhen James Xiang · Hao Xu · Peter J. Ramadge -
2009 Poster: fMRI-Based Inter-Subject Cortical Alignment Using Functional Connectivity »
Bryan Conroy · Ben Singer · James Haxby · Peter J. Ramadge