Poster
Manifold Embeddings for Model-Based Reinforcement Learning under Partial Observability
Keith Bush · Joelle Pineau

Mon Dec 7th 07:00 -- 11:59 PM @ None #None

Interesting real-world datasets often exhibit nonlinear, noisy, continuous-valued states that are unexplorable, are poorly described by first principles, and are only partially observable. If partial observability can be overcome, these constraints suggest the use of model-based reinforcement learning. We experiment with manifold embeddings as the reconstructed observable state-space of an off-line, model-based reinforcement learning approach to control. We demonstrate the embedding of a system changes as a result of learning and that the best performing embeddings well-represent the dynamics of both the uncontrolled and adaptively controlled system. We apply this approach in simulation to learn a neurostimulation policy that is more efficient in treating epilepsy than conventional policies. We then demonstrate the learned policy completely suppressing seizures in real-world neurostimulation experiments on actual animal brain slices.

Author Information

Keith Bush (University of Arkansas at Little Rock)
Joelle Pineau (McGill University)

Joelle Pineau is an Associate Professor and William Dawson Scholar at McGill University where she co-directs the Reasoning and Learning Lab. She also leads the Facebook AI Research lab in Montreal, Canada. She holds a BASc in Engineering from the University of Waterloo, and an MSc and PhD in Robotics from Carnegie Mellon University. Dr. Pineau's research focuses on developing new models and algorithms for planning and learning in complex partially-observable domains. She also works on applying these algorithms to complex problems in robotics, health care, games and conversational agents. She serves on the editorial board of the Journal of Artificial Intelligence Research and the Journal of Machine Learning Research and is currently President of the International Machine Learning Society. She is a recipient of NSERC's E.W.R. Steacie Memorial Fellowship (2018), a Fellow of the Association for the Advancement of Artificial Intelligence (AAAI), a Senior Fellow of the Canadian Institute for Advanced Research (CIFAR) and in 2016 was named a member of the College of New Scholars, Artists and Scientists by the Royal Society of Canada.

More from the Same Authors