Timezone: »
Non-parametric Bayesian techniques are considered for learning dictionaries for sparse image representations, with applications in denoising, inpainting and compressive sensing (CS). The beta process is employed as a prior for learning the dictionary, and this non-parametric method naturally infers an appropriate dictionary size. The Dirichlet process and a probit stick-breaking process are also considered to exploit structure within an image. The proposed method can learn a sparse dictionary in situ; training images may be exploited if available, but they are not required. Further, the noise variance need not be known, and can be non-stationary. Another virtue of the proposed method is that sequential inference can be readily employed, thereby allowing scaling to large images. Several example results are presented, using both Gibbs and variational Bayesian inference, with comparisons to other state-of-the-art approaches.
Author Information
Mingyuan Zhou (University of Texas at Austin)
Haojun Chen (Duke University)
John Paisley
Lu Ren (Duke University)
Guillermo Sapiro (Duke University)
Lawrence Carin (KAUST)
Related Events (a corresponding poster, oral, or spotlight)
-
2009 Oral: Non-Parametric Bayesian Dictionary Learning for Sparse Image Representations »
Tue. Dec 8th 07:20 -- 07:40 PM Room
More from the Same Authors
-
2021 Spotlight: Supercharging Imbalanced Data Learning With Energy-based Contrastive Representation Transfer »
Junya Chen · Zidi Xiu · Benjamin Goldstein · Ricardo Henao · Lawrence Carin · Chenyang Tao -
2021 : Federating for Learning Group Fair Models »
Afroditi Papadaki · Natalia Martinez · Martin Bertran · Guillermo Sapiro · Miguel Rodrigues -
2021 : Distributionally Robust Group Backwards Compatibility »
Martin Bertran · Natalia Martinez · Guillermo Sapiro -
2021 : Complexity in Facial dynamics using Computer Vision as Behavioral Assessment for Autism Spectrum Disorder »
Pradeep Raj Krishnappa Babu · J. Matias Di Martino · Kimberley Carpenter · Steven Espinosa · geraldine Dawson · Guillermo Sapiro -
2022 Poster: Knowledge-Aware Bayesian Deep Topic Model »
Dongsheng Wang · Yishi Xu · Miaoge Li · Zhibin Duan · Chaojie Wang · Bo Chen · Mingyuan Zhou -
2022 Poster: HyperMiner: Topic Taxonomy Mining with Hyperbolic Embedding »
Yishi Xu · Dongsheng Wang · Bo Chen · Ruiying Lu · Zhibin Duan · Mingyuan Zhou -
2022 : Improving Generalization with Physical Equations »
Antoine Wehenkel · Jens Behrmann · Hsiang Hsu · Guillermo Sapiro · Gilles Louppe · Joern-Henrik Jacobsen -
2022 : CAM-GAN: Continual Adaptation Modules for Generative Adversarial Networks »
Sakshi Varshney · Vinay Verma · Srijith PK · Piyush Rai · Lawrence Carin -
2022 : Federated Fairness without Access to Demographics »
Afroditi Papadaki · Natalia Martinez · Martin Bertran · Guillermo Sapiro · Miguel Rodrigues -
2022 : Fantastic Rewards and How to Tame Them: A Case Study on Reward Learning for Task-Oriented Dialogue Systems »
Yihao Feng · Shentao Yang · Shujian Zhang · Jianguo Zhang · Caiming Xiong · Mingyuan Zhou · Huan Wang -
2022 : A Large-Scale Observational Study of the Causal Effects of a Behavioral Health Nudge »
Achille Nazaret · Guillermo Sapiro -
2022 : Fantastic Rewards and How to Tame Them: A Case Study on Reward Learning for Task-Oriented Dialogue Systems »
Yihao Feng · Shentao Yang · Shujian Zhang · Jianguo Zhang · Caiming Xiong · Mingyuan Zhou · Huan Wang -
2022 : Diffusion Policies as an Expressive Policy Class for Offline Reinforcement Learning »
Zhendong Wang · jonathan j hunt · Mingyuan Zhou -
2023 Poster: Beta Diffusion »
Mingyuan Zhou · Tianqi Chen · Huangjie Zheng · Zhendong Wang -
2023 Poster: Patch Diffusion: Faster and More Data-Efficient Training of Diffusion Models »
Zhendong Wang · Yifan Jiang · Huangjie Zheng · Peihao Wang · Pengcheng He · Zhangyang Wang · Weizhu Chen · Mingyuan Zhou -
2023 Poster: Few-shot Generation via Recalling the Episodic-Semantic Memory like Human Being »
Zhibin Duan · Zhiyi Lv · Chaojie Wang · Bo Chen · Bo An · Mingyuan Zhou -
2023 Poster: Context-guided Embedding Adaptation for Effective Topic Modeling in Low-Resource Regimes »
Yishi Xu · Jianqiao Sun · Yudi Su · Xinyang Liu · Zhibin Duan · Bo Chen · Mingyuan Zhou -
2023 Poster: Preference-grounded Token-level Guidance for Language Model Fine-tuning »
Shentao Yang · Shujian Zhang · Congying Xia · Yihao Feng · Caiming Xiong · Mingyuan Zhou -
2023 Poster: In-Context Learning Unlocked for Diffusion Models »
Zhendong Wang · Yifan Jiang · Yadong Lu · yelong shen · Pengcheng He · Weizhu Chen · Zhangyang Wang · Mingyuan Zhou -
2022 : A Tale of Two Food Adventurers: The Challenges and Triumphs of Repeated Food Exposures in Avoidant/Restrictive Food Intake Disorder »
Young Kyung Kim · Juan Matias Di Martino · Julia Nicholas · Ilana Pilato · Alannah Rivera-Cancel · Julia Gianneschi · Jalisa Jackson · Ellen Mines · Nancy Zucker · Guillermo Sapiro -
2022 Spotlight: Lightning Talks 5B-4 »
Yuezhi Yang · Zeyu Yang · Yong Lin · Yishi Xu · Linan Yue · Tao Yang · Weixin Chen · Qi Liu · Jiaqi Chen · Dongsheng Wang · Baoyuan Wu · Yuwang Wang · Hao Pan · Shengyu Zhu · Zhenwei Miao · Yan Lu · Lu Tan · Bo Chen · Yichao Du · Haoqian Wang · Wei Li · Yanqing An · Ruiying Lu · Peng Cui · Nanning Zheng · Li Wang · Zhibin Duan · Xiatian Zhu · Mingyuan Zhou · Enhong Chen · Li Zhang -
2022 Spotlight: HyperMiner: Topic Taxonomy Mining with Hyperbolic Embedding »
Yishi Xu · Dongsheng Wang · Bo Chen · Ruiying Lu · Zhibin Duan · Mingyuan Zhou -
2022 Spotlight: Lightning Talks 2A-4 »
Sarthak Mittal · Richard Grumitt · Zuoyu Yan · Lihao Wang · Dongsheng Wang · Alexander Korotin · Jiangxin Sun · Ankit Gupta · Vage Egiazarian · Tengfei Ma · Yi Zhou · Yishi Xu · Albert Gu · Biwei Dai · Chunyu Wang · Yoshua Bengio · Uros Seljak · Miaoge Li · Guillaume Lajoie · Yiqun Wang · Liangcai Gao · Lingxiao Li · Jonathan Berant · Huang Hu · Xiaoqing Zheng · Zhibin Duan · Hanjiang Lai · Evgeny Burnaev · Zhi Tang · Zhi Jin · Xuanjing Huang · Chaojie Wang · Yusu Wang · Jian-Fang Hu · Bo Chen · Chao Chen · Hao Zhou · Mingyuan Zhou -
2022 Spotlight: Knowledge-Aware Bayesian Deep Topic Model »
Dongsheng Wang · Yishi Xu · Miaoge Li · Zhibin Duan · Chaojie Wang · Bo Chen · Mingyuan Zhou -
2022 : Modeling Heart Rate Response to Exercise with Wearables Data »
Achille Nazaret · Sana Tonekaboni · Gregory Darnell · Shirley Ren · Guillermo Sapiro · Andrew Miller -
2022 Poster: Learning to Re-weight Examples with Optimal Transport for Imbalanced Classification »
Dandan Guo · Zhuo Li · meixi zheng · He Zhao · Mingyuan Zhou · Hongyuan Zha -
2022 Poster: Adaptive Distribution Calibration for Few-Shot Learning with Hierarchical Optimal Transport »
Dandan Guo · Long Tian · He Zhao · Mingyuan Zhou · Hongyuan Zha -
2022 Poster: Alleviating "Posterior Collapse'' in Deep Topic Models via Policy Gradient »
Yewen Li · Chaojie Wang · Zhibin Duan · Dongsheng Wang · Bo Chen · Bo An · Mingyuan Zhou -
2022 Poster: A Variational Edge Partition Model for Supervised Graph Representation Learning »
Yilin He · Chaojie Wang · Hao Zhang · Bo Chen · Mingyuan Zhou -
2022 Poster: A Unified Framework for Alternating Offline Model Training and Policy Learning »
Shentao Yang · Shujian Zhang · Yihao Feng · Mingyuan Zhou -
2022 Poster: CARD: Classification and Regression Diffusion Models »
Xizewen Han · Huangjie Zheng · Mingyuan Zhou -
2021 Poster: Supercharging Imbalanced Data Learning With Energy-based Contrastive Representation Transfer »
Junya Chen · Zidi Xiu · Benjamin Goldstein · Ricardo Henao · Lawrence Carin · Chenyang Tao -
2021 Poster: Exploiting Chain Rule and Bayes' Theorem to Compare Probability Distributions »
Huangjie Zheng · Mingyuan Zhou -
2021 Poster: CAM-GAN: Continual Adaptation Modules for Generative Adversarial Networks »
Sakshi Varshney · Vinay Kumar Verma · P. K. Srijith · Lawrence Carin · Piyush Rai -
2021 Poster: Alignment Attention by Matching Key and Query Distributions »
Shujian Zhang · Xinjie Fan · Huangjie Zheng · Korawat Tanwisuth · Mingyuan Zhou -
2021 Poster: Probabilistic Margins for Instance Reweighting in Adversarial Training »
qizhou wang · Feng Liu · Bo Han · Tongliang Liu · Chen Gong · Gang Niu · Mingyuan Zhou · Masashi Sugiyama -
2021 Poster: Convex Polytope Trees »
Mohammadreza Armandpour · Ali Sadeghian · Mingyuan Zhou -
2021 Poster: TopicNet: Semantic Graph-Guided Topic Discovery »
Zhibin Duan · Yishi Xu · Bo Chen · Dongsheng Wang · Chaojie Wang · Mingyuan Zhou -
2021 Poster: A Prototype-Oriented Framework for Unsupervised Domain Adaptation »
Korawat Tanwisuth · Xinjie Fan · Huangjie Zheng · Shujian Zhang · Hao Zhang · Bo Chen · Mingyuan Zhou -
2021 Poster: CARMS: Categorical-Antithetic-REINFORCE Multi-Sample Gradient Estimator »
Alek Dimitriev · Mingyuan Zhou -
2020 : Lightning Talk 2: Pareto Robustness for Fairness Beyond Demographics »
Natalia Martinez · Martin Bertran · Afroditi Papadaki · Miguel Rodrigues · Guillermo Sapiro -
2020 Poster: Bidirectional Convolutional Poisson Gamma Dynamical Systems »
wenchao chen · Chaojie Wang · Bo Chen · Yicheng Liu · Hao Zhang · Mingyuan Zhou -
2020 Poster: Implicit Distributional Reinforcement Learning »
Yuguang Yue · Zhendong Wang · Mingyuan Zhou -
2020 Poster: GAN Memory with No Forgetting »
Yulai Cong · Miaoyun Zhao · Jianqiao Li · Sijia Wang · Lawrence Carin -
2020 Poster: Deep Relational Topic Modeling via Graph Poisson Gamma Belief Network »
Chaojie Wang · Hao Zhang · Bo Chen · Dongsheng Wang · Zhengjue Wang · Mingyuan Zhou -
2020 Poster: Reconsidering Generative Objectives For Counterfactual Reasoning »
Danni Lu · Chenyang Tao · Junya Chen · Fan Li · Feng Guo · Lawrence Carin -
2020 Poster: AutoSync: Learning to Synchronize for Data-Parallel Distributed Deep Learning »
Hao Zhang · Yuan Li · Zhijie Deng · Xiaodan Liang · Lawrence Carin · Eric Xing -
2020 Poster: Perturbing Across the Feature Hierarchy to Improve Standard and Strict Blackbox Attack Transferability »
Nathan Inkawhich · Kevin J Liang · Binghui Wang · Matthew Inkawhich · Lawrence Carin · Yiran Chen -
2020 Poster: Calibrating CNNs for Lifelong Learning »
Pravendra Singh · Vinay Kumar Verma · Pratik Mazumder · Lawrence Carin · Piyush Rai -
2020 Poster: Bayesian Attention Modules »
Xinjie Fan · Shujian Zhang · Bo Chen · Mingyuan Zhou -
2019 Poster: Variational Graph Recurrent Neural Networks »
Ehsan Hajiramezanali · Arman Hasanzadeh · Krishna Narayanan · Nick Duffield · Mingyuan Zhou · Xiaoning Qian -
2019 Poster: Improving Textual Network Learning with Variational Homophilic Embeddings »
Wenlin Wang · Chenyang Tao · Zhe Gan · Guoyin Wang · Liqun Chen · Xinyuan Zhang · Ruiyi Zhang · Qian Yang · Ricardo Henao · Lawrence Carin -
2019 Poster: Ouroboros: On Accelerating Training of Transformer-Based Language Models »
Qian Yang · Zhouyuan Huo · Wenlin Wang · Lawrence Carin -
2019 Poster: Semi-Implicit Graph Variational Auto-Encoders »
Arman Hasanzadeh · Ehsan Hajiramezanali · Krishna Narayanan · Nick Duffield · Mingyuan Zhou · Xiaoning Qian -
2019 Poster: Poisson-Randomized Gamma Dynamical Systems »
Aaron Schein · Scott Linderman · Mingyuan Zhou · David Blei · Hanna Wallach -
2019 Poster: Scalable Gromov-Wasserstein Learning for Graph Partitioning and Matching »
Hongteng Xu · Dixin Luo · Lawrence Carin -
2019 Poster: Kernel-Based Approaches for Sequence Modeling: Connections to Neural Methods »
Kevin J Liang · Guoyin Wang · Yitong Li · Ricardo Henao · Lawrence Carin -
2019 Poster: Certified Adversarial Robustness with Additive Noise »
Bai Li · Changyou Chen · Wenlin Wang · Lawrence Carin -
2019 Poster: On Fenchel Mini-Max Learning »
Chenyang Tao · Liqun Chen · Shuyang Dai · Junya Chen · Ke Bai · Dong Wang · Jianfeng Feng · Wenlian Lu · Georgiy Bobashev · Lawrence Carin -
2018 : Poster Session »
Phillipp Schoppmann · Patrick Yu · Valerie Chen · Travis Dick · Marc Joye · Ningshan Zhang · Frederik Harder · Olli Saarikivi · Théo Ryffel · Yunhui Long · Théo JOURDAN · Di Wang · Antonio Marcedone · Negev Shekel Nosatzki · Yatharth A Dubey · Antti Koskela · Peter Bloem · Aleksandra Korolova · Martin Bertran · Hao Chen · Galen Andrew · Natalia Martinez · Janardhan Kulkarni · Jonathan Passerat-Palmbach · Guillermo Sapiro · Amrita Roy Chowdhury -
2018 Poster: Nonparametric Bayesian Lomax delegate racing for survival analysis with competing risks »
Quan Zhang · Mingyuan Zhou -
2018 Poster: Deep Poisson gamma dynamical systems »
Dandan Guo · Bo Chen · Hao Zhang · Mingyuan Zhou -
2018 Poster: Dirichlet belief networks for topic structure learning »
He Zhao · Lan Du · Wray Buntine · Mingyuan Zhou -
2018 Poster: Parsimonious Bayesian deep networks »
Mingyuan Zhou -
2018 Poster: Adversarial Text Generation via Feature-Mover's Distance »
Liqun Chen · Shuyang Dai · Chenyang Tao · Haichao Zhang · Zhe Gan · Dinghan Shen · Yizhe Zhang · Guoyin Wang · Dinghan Shen · Lawrence Carin -
2018 Poster: Distilled Wasserstein Learning for Word Embedding and Topic Modeling »
Hongteng Xu · Wenlin Wang · Wei Liu · Lawrence Carin -
2018 Poster: Masking: A New Perspective of Noisy Supervision »
Bo Han · Jiangchao Yao · Gang Niu · Mingyuan Zhou · Ivor Tsang · Ya Zhang · Masashi Sugiyama -
2018 Poster: Diffusion Maps for Textual Network Embedding »
Xinyuan Zhang · Yitong Li · Dinghan Shen · Lawrence Carin -
2018 Poster: Bayesian multi-domain learning for cancer subtype discovery from next-generation sequencing count data »
Ehsan Hajiramezanali · Siamak Zamani Dadaneh · Alireza Karbalayghareh · Mingyuan Zhou · Xiaoning Qian -
2018 Spotlight: Diffusion Maps for Textual Network Embedding »
Xinyuan Zhang · Yitong Li · Dinghan Shen · Lawrence Carin -
2017 Spotlight: Targeting EEG/LFP Synchrony with Neural Nets »
Yitong Li · michael Murias · samantha Major · geraldine Dawson · Kafui Dzirasa · Lawrence Carin · David Carlson -
2017 Poster: Targeting EEG/LFP Synchrony with Neural Nets »
Yitong Li · michael Murias · samantha Major · geraldine Dawson · Kafui Dzirasa · Lawrence Carin · David Carlson -
2017 Poster: Triangle Generative Adversarial Networks »
Zhe Gan · Liqun Chen · Weiyao Wang · Yuchen Pu · Yizhe Zhang · Hao Liu · Chunyuan Li · Lawrence Carin -
2017 Poster: ALICE: Towards Understanding Adversarial Learning for Joint Distribution Matching »
Chunyuan Li · Hao Liu · Changyou Chen · Yuchen Pu · Liqun Chen · Ricardo Henao · Lawrence Carin -
2017 Poster: An inner-loop free solution to inverse problems using deep neural networks »
Kai Fan · Qi Wei · Lawrence Carin · Katherine Heller -
2017 Poster: VAE Learning via Stein Variational Gradient Descent »
Yuchen Pu · Zhe Gan · Ricardo Henao · Chunyuan Li · Shaobo Han · Lawrence Carin -
2017 Poster: Deconvolutional Paragraph Representation Learning »
Yizhe Zhang · Dinghan Shen · Guoyin Wang · Zhe Gan · Ricardo Henao · Lawrence Carin -
2017 Poster: Adversarial Symmetric Variational Autoencoder »
Yuchen Pu · Weiyao Wang · Ricardo Henao · Liqun Chen · Zhe Gan · Chunyuan Li · Lawrence Carin -
2017 Poster: A Probabilistic Framework for Nonlinearities in Stochastic Neural Networks »
Qinliang Su · xuejun Liao · Lawrence Carin -
2017 Poster: Scalable Model Selection for Belief Networks »
Zhao Song · Yusuke Muraoka · Ryohei Fujimaki · Lawrence Carin -
2017 Poster: Cross-Spectral Factor Analysis »
Neil Gallagher · Kyle Ulrich · Austin Talbot · Kafui Dzirasa · Lawrence Carin · David Carlson -
2016 Poster: Towards Unifying Hamiltonian Monte Carlo and Slice Sampling »
Yizhe Zhang · Xiangyu Wang · Changyou Chen · Ricardo Henao · Kai Fan · Lawrence Carin -
2016 Poster: Variational Autoencoder for Deep Learning of Images, Labels and Captions »
Yunchen Pu · Zhe Gan · Ricardo Henao · Xin Yuan · Chunyuan Li · Andrew Stevens · Lawrence Carin -
2016 Poster: Poisson-Gamma dynamical systems »
Aaron Schein · Hanna Wallach · Mingyuan Zhou -
2016 Oral: Poisson-Gamma dynamical systems »
Aaron Schein · Hanna Wallach · Mingyuan Zhou -
2016 Poster: Linear Feature Encoding for Reinforcement Learning »
Zhao Song · Ronald Parr · Xuejun Liao · Lawrence Carin -
2016 Poster: Stochastic Gradient MCMC with Stale Gradients »
Changyou Chen · Nan Ding · Chunyuan Li · Yizhe Zhang · Lawrence Carin -
2015 : Computational discussion: Challenges in analyzing large neuroimaging datasets »
Guillermo Sapiro -
2015 Poster: Discriminative Robust Transformation Learning »
Jiaji Huang · Qiang Qiu · Guillermo Sapiro · Robert Calderbank -
2015 Poster: GP Kernels for Cross-Spectrum Analysis »
Kyle R Ulrich · David Carlson · Kafui Dzirasa · Lawrence Carin -
2015 Poster: Deep Poisson Factor Modeling »
Ricardo Henao · Zhe Gan · James Lu · Lawrence Carin -
2015 Poster: Preconditioned Spectral Descent for Deep Learning »
David Carlson · Edo Collins · Ya-Ping Hsieh · Lawrence Carin · Volkan Cevher -
2015 Poster: Large-Scale Bayesian Multi-Label Learning via Topic-Based Label Embeddings »
Piyush Rai · Changwei Hu · Ricardo Henao · Lawrence Carin -
2015 Spotlight: Large-Scale Bayesian Multi-Label Learning via Topic-Based Label Embeddings »
Piyush Rai · Changwei Hu · Ricardo Henao · Lawrence Carin -
2015 Poster: On the Convergence of Stochastic Gradient MCMC Algorithms with High-Order Integrators »
Changyou Chen · Nan Ding · Lawrence Carin -
2015 Poster: Deep Temporal Sigmoid Belief Networks for Sequence Modeling »
Zhe Gan · Chunyuan Li · Ricardo Henao · David Carlson · Lawrence Carin -
2015 Poster: The Poisson Gamma Belief Network »
Mingyuan Zhou · Yulai Cong · Bo Chen -
2014 Poster: Analysis of Brain States from Multi-Region LFP Time-Series »
Kyle R Ulrich · David Carlson · Wenzhao Lian · Jana S Borg · Kafui Dzirasa · Lawrence Carin -
2014 Poster: Bayesian Nonlinear Support Vector Machines and Discriminative Factor Modeling »
Ricardo Henao · Xin Yuan · Lawrence Carin -
2014 Poster: Compressive Sensing of Signals from a GMM with Sparse Precision Matrices »
Jianbo Yang · Xuejun Liao · Minhua Chen · Lawrence Carin -
2014 Poster: On the relations of LFPs & Neural Spike Trains »
David Carlson · Jana Schaich Borg · Kafui Dzirasa · Lawrence Carin -
2014 Poster: Beta-Negative Binomial Process and Exchangeable Random Partitions for Mixed-Membership Modeling »
Mingyuan Zhou -
2014 Poster: Dynamic Rank Factor Model for Text Streams »
Shaobo Han · Lin Du · Esther Salazar · Lawrence Carin -
2013 Poster: Robust Multimodal Graph Matching: Sparse Coding Meets Graph Matching »
Marcelo Fiori · Pablo Sprechmann · Joshua T Vogelstein · Pablo Muse · Guillermo Sapiro -
2013 Spotlight: Robust Multimodal Graph Matching: Sparse Coding Meets Graph Matching »
Marcelo Fiori · Pablo Sprechmann · Joshua T Vogelstein · Pablo Muse · Guillermo Sapiro -
2013 Poster: Dynamic Clustering via Asymptotics of the Dependent Dirichlet Process Mixture »
Trevor Campbell · Miao Liu · Brian Kulis · Jonathan How · Lawrence Carin -
2013 Poster: Designed Measurements for Vector Count Data »
Liming Wang · David Carlson · Miguel Rodrigues · David Wilcox · Robert Calderbank · Lawrence Carin -
2013 Poster: Integrated Non-Factorized Variational Inference »
Shaobo Han · Xuejun Liao · Lawrence Carin -
2013 Poster: Real-Time Inference for a Gamma Process Model of Neural Spiking »
David Carlson · Vinayak Rao · Joshua T Vogelstein · Lawrence Carin -
2013 Poster: Supervised Sparse Analysis and Synthesis Operators »
Pablo Sprechmann · Roee Litman · Tal Ben Yakar · Alexander M Bronstein · Guillermo Sapiro -
2012 Workshop: Bayesian Nonparametric Models For Reliable Planning And Decision-Making Under Uncertainty »
Jonathan How · Lawrence Carin · John Fisher III · Michael Jordan · Alborz Geramifard -
2012 Poster: Joint Modeling of a Matrix with Associated Text via Latent Binary Features »
XianXing Zhang · Lawrence Carin -
2012 Poster: Topology Constraints in Graphical Models »
Marcelo Fiori · Pablo Muse · Guillermo Sapiro -
2012 Poster: Augment-and-Conquer Negative Binomial Processes »
Mingyuan Zhou · Lawrence Carin -
2012 Spotlight: Augment-and-Conquer Negative Binomial Processes »
Mingyuan Zhou · Lawrence Carin -
2012 Poster: Finding Exemplars from Pairwise Dissimilarities via Simultaneous Sparse Recovery »
Ehsan Elhamifar · Guillermo Sapiro · René Vidal -
2011 Poster: On the Analysis of Multi-Channel Neural Spike Data »
Bo Chen · David Carlson · Lawrence Carin -
2011 Poster: The Kernel Beta Process »
Lu Ren · Yingjian Wang · David B Dunson · Lawrence Carin -
2011 Spotlight: The Kernel Beta Process »
Lu Ren · Yingjian Wang · David B Dunson · Lawrence Carin -
2011 Poster: Hierarchical Topic Modeling for Analysis of Time-Evolving Personal Choices »
XianXing Zhang · David B Dunson · Lawrence Carin -
2010 Poster: Joint Analysis of Time-Evolving Binary Matrices and Associated Documents »
Eric X Wang · Dehong Liu · Jorge G Silva · David B Dunson · Lawrence Carin -
2009 Poster: A Bayesian Model for Simultaneous Image Clustering, Annotation and Object Segmentation »
Lan Du · Lu Ren · David B Dunson · Lawrence Carin -
2009 Poster: Learning to Explore and Exploit in POMDPs »
Chenghui Cai · Xuejun Liao · Lawrence Carin -
2008 Workshop: Cost Sensitive Learning »
Balaji R Krishnapuram · Shipeng Yu · Oksana Yakhnenko · R. Bharat Rao · Lawrence Carin -
2008 Poster: SDL: Supervised Dictionary Learning »
Julien Mairal · Francis Bach · Jean A Ponce · Guillermo Sapiro · Andrew Zisserman -
2007 Poster: Semi-Supervised Multitask Learning »
Qiuhua Liu · Xuejun Liao · Lawrence Carin -
2007 Spotlight: Semi-Supervised Multitask Learning »
Qiuhua Liu · Xuejun Liao · Lawrence Carin -
2006 Poster: Stratification Learning: Detecting Mixed Density and Dimensionality in High Dimensional Point Clouds »
Gloria Haro · Gregory Randall · Guillermo Sapiro