Timezone: »
Learning distance functions with side information plays a key role in many machine learning and data mining applications. Conventional approaches often assume a Mahalanobis distance function. These approaches are limited in two aspects: (i) they are computationally expensive (even infeasible) for high dimensional data because the size of the metric is in the square of dimensionality; (ii) they assume a fixed metric for the entire input space and therefore are unable to handle heterogeneous data. In this paper, we propose a novel scheme that learns nonlinear Bregman distance functions from side information using a non-parametric approach that is similar to support vector machines. The proposed scheme avoids the assumption of fixed metric because its local distance metric is implicitly derived from the Hessian matrix of a convex function that is used to generate the Bregman distance function. We present an efficient learning algorithm for the proposed scheme for distance function learning. The extensive experiments with semi-supervised clustering show the proposed technique (i) outperforms the state-of-the-art approaches for distance function learning, and (ii) is computationally efficient for high dimensional data.
Author Information
Lei Wu (GE Global Research)
Rong Jin (Michigan State University (MSU))
Steven Chu-Hong Hoi (Nanyang Technological University)
Jianke Zhu (ETH Zurich)
Nenghai Yu (University of Science and Technology of China)
More from the Same Authors
-
2020 Poster: Passport-aware Normalization for Deep Model Protection »
Jie Zhang · Dongdong Chen · Jing Liao · Weiming Zhang · Gang Hua · Nenghai Yu -
2020 Poster: GreedyFool: Distortion-Aware Sparse Adversarial Attack »
Xiaoyi Dong · Dongdong Chen · Jianmin Bao · Chuan Qin · Lu Yuan · Weiming Zhang · Nenghai Yu · Dong Chen -
2017 Poster: Deliberation Networks: Sequence Generation Beyond One-Pass Decoding »
Yingce Xia · Fei Tian · Lijun Wu · Jianxin Lin · Tao Qin · Nenghai Yu · Tie-Yan Liu -
2016 Poster: Dual Learning for Machine Translation »
Di He · Yingce Xia · Tao Qin · Liwei Wang · Nenghai Yu · Tie-Yan Liu · Wei-Ying Ma -
2014 Poster: Extracting Certainty from Uncertainty: Transductive Pairwise Classification from Pairwise Similarities »
Tianbao Yang · Rong Jin -
2014 Poster: Top Rank Optimization in Linear Time »
Nan Li · Rong Jin · Zhi-Hua Zhou -
2013 Poster: Mixed Optimization for Smooth Functions »
Mehrdad Mahdavi · Lijun Zhang · Rong Jin -
2013 Poster: Linear Convergence with Condition Number Independent Access of Full Gradients »
Lijun Zhang · Mehrdad Mahdavi · Rong Jin -
2013 Poster: Stochastic Convex Optimization with Multiple Objectives »
Mehrdad Mahdavi · Tianbao Yang · Rong Jin -
2013 Poster: Speedup Matrix Completion with Side Information: Application to Multi-Label Learning »
Miao Xu · Rong Jin · Zhi-Hua Zhou -
2012 Poster: Nystr{รถ}m Method vs Random Fourier Features: A Theoretical and Empirical Comparison »
Tianbao Yang · Yu-Feng Li · Mehrdad Mahdavi · Rong Jin · Zhi-Hua Zhou -
2012 Poster: Semi-Crowdsourced Clustering: Generalizing Crowd Labeling by Robust Distance Metric Learning »
Jinfeng Yi · Rong Jin · Anil K Jain · Shaili Jain -
2012 Poster: Stochastic Gradient Descent with Only One Projection »
Mehrdad Mahdavi · Tianbao Yang · Rong Jin · Shenghuo Zhu -
2010 Poster: Active Learning by Querying Informative and Representative Examples »
Sheng-Jun Huang · Rong Jin · Zhi-Hua Zhou -
2010 Poster: Multi-label Multiple Kernel Learning by Stochastic Approximation: Application to Visual Object Recognition »
Serhat S Bucak · Rong Jin · Anil K Jain -
2009 Poster: Adaptive Regularization for Transductive Support Vector Machine »
Zenglin Xu · Rong Jin · Jianke Zhu · Irwin King · Michael R Lyu · Zhirong Yang -
2009 Spotlight: Adaptive Regularization for Transductive Support Vector Machine »
Zenglin Xu · Rong Jin · Jianke Zhu · Irwin King · Michael R Lyu · Zhirong Yang -
2009 Poster: Regularized Distance Metric Learning:Theory and Algorithm »
Rong Jin · Shijun Wang · Yang Zhou -
2009 Poster: DUOL: A Double Updating Approach for Online Learning »
Peilin Zhao · Steven Chu-Hong Hoi · Rong Jin -
2009 Poster: Learning to Rank by Optimizing NDCG Measure »
Hamed Valizadegan · Rong Jin · Ruofei Zhang · Jianchang Mao -
2009 Spotlight: Learning to Rank by Optimizing NDCG Measure »
Hamed Valizadegan · Rong Jin · Ruofei Zhang · Jianchang Mao -
2008 Poster: Multi-label Multiple Kernel Learning »
Shuiwang Ji · Liang Sun · Rong Jin · Jieping Ye -
2008 Spotlight: Multi-label Multiple Kernel Learning »
Shuiwang Ji · Liang Sun · Rong Jin · Jieping Ye -
2008 Poster: An Extended Level Method for Efficient Multiple Kernel Learning »
Zenglin Xu · Rong Jin · Irwin King · Michael R Lyu -
2008 Poster: Semi-supervised Learning with Weakly-Related Unlabeled Data : Towards Better Text Categorization »
Liu Yang · Rong Jin · Rahul Sukthankar -
2008 Spotlight: Semi-supervised Learning with Weakly-Related Unlabeled Data : Towards Better Text Categorization »
Liu Yang · Rong Jin · Rahul Sukthankar -
2007 Poster: Efficient Convex Relaxation for Transductive Support Vector Machine »
Zenglin Xu · Rong Jin · Jianke Zhu · Irwin King · Michael R Lyu -
2006 Poster: Generalized Maximum Margin Clustering and Unsupervised Kernel Learning »
Hamed Valizadegan · Rong Jin