Timezone: »
Over recent years Dirichlet processes and the associated Chinese restaurant process (CRP) have found many applications in clustering while the Indian buffet process (IBP) is increasingly used to describe latent feature models. In the clustering case, we associate to each data point a latent allocation variable. These latent variables can share the same value and this induces a partition of the data set. The CRP is a prior distribution on such partitions. In latent feature models, we associate to each data point a potentially infinite number of binary latent variables indicating the possession of some features and the IBP is a prior distribution on the associated infinite binary matrix. These prior distributions are attractive because they ensure exchangeability (over samples). We propose here extensions of these models to decomposable graphs. These models have appealing properties and can be easily learned using Monte Carlo techniques.
Author Information
Francois Caron (University of Oxford)
Arnaud Doucet (Oxford)
More from the Same Authors
-
2019 Poster: Augmented Neural ODEs »
Emilien Dupont · Arnaud Doucet · Yee Whye Teh -
2018 Poster: Hamiltonian Variational Auto-Encoder »
Anthony L Caterini · Arnaud Doucet · Dino Sejdinovic -
2017 Poster: Filtering Variational Objectives »
Chris Maddison · John Lawson · George Tucker · Nicolas Heess · Mohammad Norouzi · Andriy Mnih · Arnaud Doucet · Yee Teh -
2017 Poster: Clone MCMC: Parallel High-Dimensional Gaussian Gibbs Sampling »
Andrei-Cristian Barbos · Francois Caron · Jean-François Giovannelli · Arnaud Doucet -
2015 Workshop: Scalable Monte Carlo Methods for Bayesian Analysis of Big Data »
Babak Shahbaba · Yee Whye Teh · Max Welling · Arnaud Doucet · Christophe Andrieu · Sebastian J. Vollmer · Pierre Jacob -
2015 Poster: Expectation Particle Belief Propagation »
Thibaut Lienart · Yee Whye Teh · Arnaud Doucet -
2014 Poster: Asynchronous Anytime Sequential Monte Carlo »
Brooks Paige · Frank Wood · Arnaud Doucet · Yee Whye Teh -
2014 Oral: Asynchronous Anytime Sequential Monte Carlo »
Brooks Paige · Frank Wood · Arnaud Doucet · Yee Whye Teh -
2013 Poster: Probabilistic Low-Rank Matrix Completion with Adaptive Spectral Regularization Algorithms »
Adrien Todeschini · Francois Caron · Marie Chavent -
2012 Poster: Bayesian nonparametric models for bipartite graphs »
Francois Caron -
2012 Poster: Bayesian nonparametric models for ranked data »
Francois Caron · Yee Whye Teh -
2012 Oral: Bayesian nonparametric models for bipartite graphs »
Francois Caron -
2009 Workshop: Nonparametric Bayes »
Dilan Gorur · Francois Caron · Yee Whye Teh · David B Dunson · Zoubin Ghahramani · Michael Jordan -
2009 Tutorial: Sequential Monte-Carlo Methods »
Arnaud Doucet · Nando de Freitas -
2007 Spotlight: Bayesian Policy Learning with Trans-Dimensional MCMC »
Matthew Hoffman · Arnaud Doucet · Nando de Freitas · Ajay Jasra -
2007 Poster: Bayesian Policy Learning with Trans-Dimensional MCMC »
Matthew Hoffman · Arnaud Doucet · Nando de Freitas · Ajay Jasra