Timezone: »
Poster
Adaptive Regularization of Weight Vectors
Yacov Crammer · Alex Kulesza · Mark Dredze
We present AROW, a new online learning algorithm that combines several properties of successful : large margin training, confidence weighting, and the capacity to handle non-separable data. AROW performs adaptive regularization of the prediction function upon seeing each new instance, allowing it to perform especially well in the presence of label noise. We derive a mistake bound, similar in form to the second order perceptron bound, which does not assume separability. We also relate our algorithm to recent confidence-weighted online learning techniques and empirically show that AROW achieves state-of-the-art performance and notable robustness in the case of non-separable data.
Author Information
Yacov Crammer (Technion)
Alex Kulesza (Google)
Mark Dredze (Johns Hopkins)
Related Events (a corresponding poster, oral, or spotlight)
-
2009 Spotlight: Adaptive Regularization of Weight Vectors »
Wed. Dec 9th 11:30 -- 11:31 PM Room
More from the Same Authors
-
2022 : The Importance of Temperature in Multi-Task Optimization »
David Mueller · Mark Dredze · Nicholas Andrews -
2022 Poster: Finite Sample Analysis Of Dynamic Regression Parameter Learning »
Mark Kozdoba · Edward Moroshko · Shie Mannor · Yacov Crammer -
2020 : Mark Dredze: Reducing Health Disparities in the Future of Medicine »
Mark Dredze -
2018 Poster: Efficient Loss-Based Decoding on Graphs for Extreme Classification »
Itay Evron · Edward Moroshko · Yacov Crammer -
2017 Poster: Rotting Bandits »
Nir Levine · Yacov Crammer · Shie Mannor -
2015 Poster: Linear Multi-Resource Allocation with Semi-Bandit Feedback »
Tor Lattimore · Yacov Crammer · Csaba Szepesvari -
2014 Poster: Expectation-Maximization for Learning Determinantal Point Processes »
Jennifer A Gillenwater · Alex Kulesza · Emily Fox · Ben Taskar -
2014 Poster: Learning Multiple Tasks in Parallel with a Shared Annotator »
Haim Cohen · Yacov Crammer -
2013 Workshop: Resource-Efficient Machine Learning »
Yevgeny Seldin · Yasin Abbasi Yadkori · Yacov Crammer · Ralf Herbrich · Peter Bartlett -
2012 Workshop: Multi-Trade-offs in Machine Learning »
Yevgeny Seldin · Guy Lever · John Shawe-Taylor · Nicolò Cesa-Bianchi · Yacov Crammer · Francois Laviolette · Gabor Lugosi · Peter Bartlett -
2012 Poster: Factorial LDA: Sparse Multi-Dimensional Text Models »
Michael J Paul · Mark Dredze -
2012 Poster: Near-Optimal MAP Inference for Determinantal Point Processes »
Alex Kulesza · Jennifer A Gillenwater · Ben Taskar -
2012 Oral: Near-Optimal MAP Inference for Determinantal Point Processes »
Alex Kulesza · Jennifer A Gillenwater · Ben Taskar -
2012 Poster: Volume Regularization for Binary Classification »
Yacov Crammer · Tal Wagner -
2012 Spotlight: Volume Regularization for Binary Classification »
Yacov Crammer · Tal Wagner -
2012 Poster: Learning Multiple Tasks using Shared Hypotheses »
Yacov Crammer · Yishay Mansour -
2011 Workshop: New Frontiers in Model Order Selection »
Yevgeny Seldin · Yacov Crammer · Nicolò Cesa-Bianchi · Francois Laviolette · John Shawe-Taylor -
2010 Spotlight: Structured Determinantal Point Processes »
Alex Kulesza · Ben Taskar -
2010 Poster: Learning via Gaussian Herding »
Yacov Crammer · Daniel Lee -
2010 Poster: Structured Determinantal Point Processes »
Alex Kulesza · Ben Taskar -
2010 Poster: New Adaptive Algorithms for Online Classification »
Francesco Orabona · Yacov Crammer -
2009 Workshop: Advances in Ranking »
Shivani Agarwal · Chris J Burges · Yacov Crammer -
2008 Session: Oral session 6: Neural Coding »
Yacov Crammer -
2008 Poster: Exact Convex Confidence-Weighted Learning »
Yacov Crammer · Mark Dredze · Fernando Pereira -
2008 Spotlight: Exact Convex Confidence-Weighted Learning »
Yacov Crammer · Mark Dredze · Fernando Pereira -
2007 Spotlight: Structured Learning with Approximate Inference »
Alex Kulesza · Fernando Pereira -
2007 Poster: Structured Learning with Approximate Inference »
Alex Kulesza · Fernando Pereira -
2007 Poster: Learning Bounds for Domain Adaptation »
John Blitzer · Yacov Crammer · Alex Kulesza · Fernando Pereira · Jennifer Wortman Vaughan -
2006 Poster: Learning from Multiple Sources »
Yacov Crammer · Michael Kearns · Jennifer Wortman Vaughan -
2006 Poster: Analysis of Representations for Domain Adaptation »
John Blitzer · Shai Ben-David · Yacov Crammer · Fernando Pereira