Poster
Spatial Normalized Gamma Processes
Vinayak Rao · Yee Whye Teh

Mon Dec 7th 07:00 -- 11:59 PM @ None #None

Dependent Dirichlet processes (DPs) are dependent sets of random measures, each being marginally Dirichlet process distributed. They are used in Bayesian nonparametric models when the usual exchangebility assumption does not hold. We propose a simple and general framework to construct dependent DPs by marginalizing and normalizing a single gamma process over an extended space. The result is a set of DPs, each located at a point in a space such that neighboring DPs are more dependent. We describe Markov chain Monte Carlo inference, involving the typical Gibbs sampling and three different Metropolis-Hastings proposals to speed up convergence. We report an empirical study of convergence speeds on a synthetic dataset and demonstrate an application of the model to topic modeling through time.

Author Information

Vinayak Rao (Purdue University)
Yee Whye Teh (University of Oxford, DeepMind)

I am a Professor of Statistical Machine Learning at the Department of Statistics, University of Oxford and a Research Scientist at DeepMind. I am also an Alan Turing Institute Fellow and a European Research Council Consolidator Fellow. I obtained my Ph.D. at the University of Toronto (working with Geoffrey Hinton), and did postdoctoral work at the University of California at Berkeley (with Michael Jordan) and National University of Singapore (as Lee Kuan Yew Postdoctoral Fellow). I was a Lecturer then a Reader at the Gatsby Computational Neuroscience Unit, UCL, and a tutorial fellow at University College Oxford, prior to my current appointment. I am interested in the statistical and computational foundations of intelligence, and works on scalable machine learning, probabilistic models, Bayesian nonparametrics and deep learning. I was programme co-chair of ICML 2017 and AISTATS 2010.

More from the Same Authors