Timezone: »
Discriminatively trained undirected graphical models have had wide empirical success, and there has been increasing interest in toolkits that ease their application to complex relational data. The power in relational models is in their repeated structure and tied parameters; at issue is how to define these structures in a powerful and flexible way. Rather than using a declarative language, such as SQL or first-order logic, we advocate using an imperative language to express various aspects of model structure, inference, and learning. By combining the traditional, declarative, statistical semantics of factor graphs with imperative definitions of their construction and operation, we allow the user to mix declarative and procedural domain knowledge, and also gain significant efficiencies. We have implemented such imperatively defined factor graphs in a system we call Factorie, a software library for an object-oriented, strongly-typed, functional language. In experimental comparisons to Markov Logic Networks on joint segmentation and coreference, we find our approach to be 3-15 times faster while reducing error by 20-25%-achieving a new state of the art.
Author Information
Andrew McCallum (UMass Amherst)
Karl Schultz (University of Massachusetts Amherst)
Sameer Singh (University of California, Irvine)
More from the Same Authors
-
2021 : CSFCube - A Test Collection of Computer Science Research Articles for Faceted Query by Example »
Sheshera Mysore · Tim O'Gorman · Andrew McCallum · Hamed Zamani -
2021 : Cutting Down on Prompts and Parameters:Simple Few-Shot Learning with Language Models »
Robert Logan · Ivana Balazevic · Eric Wallace · Fabio Petroni · Sameer Singh · Sebastian Riedel -
2022 : Quantifying Social Biases Using Templates is Unreliable »
Preethi Seshadri · Pouya Pezeshkpour · Sameer Singh -
2022 : TalkToModel: Explaining Machine Learning Models with Interactive Natural Language Conversations »
Dylan Slack · Satyapriya Krishna · Himabindu Lakkaraju · Sameer Singh -
2023 Poster: Post Hoc Explanations of Language Models Can Improve Language Models »
Satyapriya Krishna · Jiaqi Ma · Dylan Slack · Asma Ghandeharioun · Sameer Singh · Himabindu Lakkaraju -
2022 : Contributed Talk: TalkToModel: Explaining Machine Learning Models with Interactive Natural Language Conversations »
Dylan Slack · Satyapriya Krishna · Himabindu Lakkaraju · Sameer Singh -
2022 Poster: Modeling Transitivity and Cyclicity in Directed Graphs via Binary Code Box Embeddings »
Dongxu Zhang · Michael Boratko · Cameron Musco · Andrew McCallum -
2022 Poster: Structured Energy Network As a Loss »
Jay Yoon Lee · Dhruvesh Patel · Purujit Goyal · Wenlong Zhao · Zhiyang Xu · Andrew McCallum -
2021 : Panel Discussion »
Pascal Poupart · Ali Ghodsi · Luke Zettlemoyer · Sameer Singh · Kevin Duh · Yejin Choi · Lu Hou -
2021 : How to Win LMs and Influence Predictions: Using Short Phrases to Control NLP Models »
Sameer Singh -
2021 : Cutting Down on Prompts and Parameters:Simple Few-Shot Learning with Language Models »
Robert Logan · Ivana Balazevic · Eric Wallace · Fabio Petroni · Sameer Singh · Sebastian Riedel -
2021 Poster: Capacity and Bias of Learned Geometric Embeddings for Directed Graphs »
Michael Boratko · Dongxu Zhang · Nicholas Monath · Luke Vilnis · Kenneth L Clarkson · Andrew McCallum -
2021 Poster: Reliable Post hoc Explanations: Modeling Uncertainty in Explainability »
Dylan Slack · Anna Hilgard · Sameer Singh · Himabindu Lakkaraju -
2021 : PYLON: A PyTorch Framework for Learning with Constraints »
Kareem Ahmed · Tao Li · Nu Mai Thy Ton · Quan Guo · Kai-Wei Chang · Parisa Kordjamshidi · Vivek Srikumar · Guy Van den Broeck · Sameer Singh -
2021 Poster: Counterfactual Explanations Can Be Manipulated »
Dylan Slack · Anna Hilgard · Himabindu Lakkaraju · Sameer Singh -
2020 Tutorial: (Track2) Explaining Machine Learning Predictions: State-of-the-art, Challenges, and Opportunities Q&A »
Himabindu Lakkaraju · Julius Adebayo · Sameer Singh -
2020 Poster: Improving Local Identifiability in Probabilistic Box Embeddings »
Shib Dasgupta · Michael Boratko · Dongxu Zhang · Luke Vilnis · Xiang Li · Andrew McCallum -
2020 Tutorial: (Track2) Explaining Machine Learning Predictions: State-of-the-art, Challenges, and Opportunities »
Himabindu Lakkaraju · Julius Adebayo · Sameer Singh -
2019 : Coffee Break & Poster Session 2 »
Juho Lee · Yoonho Lee · Yee Whye Teh · Raymond A. Yeh · Yuan-Ting Hu · Alex Schwing · Sara Ahmadian · Alessandro Epasto · Marina Knittel · Ravi Kumar · Mohammad Mahdian · Christian Bueno · Aditya Sanghi · Pradeep Kumar Jayaraman · Ignacio Arroyo-Fernández · Andrew Hryniowski · Vinayak Mathur · Sanjay Singh · Shahrzad Haddadan · Vasco Portilheiro · Luna Zhang · Mert Yuksekgonul · Jhosimar Arias Figueroa · Deepak Maurya · Balaraman Ravindran · Frank NIELSEN · Philip Pham · Justin Payan · Andrew McCallum · Jinesh Mehta · Ke SUN -
2019 : Opening Remarks »
Manzil Zaheer · Nicholas Monath · Ari Kobren · Junier Oliva · Barnabas Poczos · Ruslan Salakhutdinov · Andrew McCallum -
2019 Workshop: Sets and Partitions »
Nicholas Monath · Manzil Zaheer · Andrew McCallum · Ari Kobren · Junier Oliva · Barnabas Poczos · Ruslan Salakhutdinov -
2019 : Andrew McCallum: Learning DAGs and Trees with Box Embeddings and Hyperbolic Embeddings »
Andrew McCallum -
2019 Workshop: KR2ML - Knowledge Representation and Reasoning Meets Machine Learning »
Veronika Thost · Christian Muise · Kartik Talamadupula · Sameer Singh · Christopher Ré -
2019 Poster: Search-Guided, Lightly-Supervised Training of Structured Prediction Energy Networks »
Amirmohammad Rooshenas · Dongxu Zhang · Gopal Sharma · Andrew McCallum -
2019 Demonstration: AllenNLP Interpret: Explaining Predictions of NLP Models »
Jens Tuyls · Eric Wallace · Matt Gardner · Junlin Wang · Sameer Singh · Sanjay Subramanian -
2018 Poster: Compact Representation of Uncertainty in Clustering »
Craig Greenberg · Nicholas Monath · Ari Kobren · Patrick Flaherty · Andrew McGregor · Andrew McCallum -
2017 : Invited Talk: "Light Supervision of Structured Prediction Energy Networks" »
Andrew McCallum -
2017 Poster: Active Bias: Training More Accurate Neural Networks by Emphasizing High Variance Samples »
Haw-Shiuan Chang · Erik Learned-Miller · Andrew McCallum -
2015 Workshop: Machine Learning Systems »
Alex Beutel · Tianqi Chen · Sameer Singh · Elaine Angelino · Markus Weimer · Joseph Gonzalez -
2014 Workshop: 3rd NIPS Workshop on Probabilistic Programming »
Daniel Roy · Josh Tenenbaum · Thomas Dietterich · Stuart J Russell · YI WU · Ulrik R Beierholm · Alp Kucukelbir · Zenna Tavares · Yura Perov · Daniel Lee · Brian Ruttenberg · Sameer Singh · Michael Hughes · Marco Gaboardi · Alexey Radul · Vikash Mansinghka · Frank Wood · Sebastian Riedel · Prakash Panangaden -
2014 Workshop: 4th Workshop on Automated Knowledge Base Construction (AKBC) »
Sameer Singh · Fabian M Suchanek · Sebastian Riedel · Partha Pratim Talukdar · Kevin Murphy · Christopher Ré · William Cohen · Tom Mitchell · Andrew McCallum · Jason E Weston · Ramanathan Guha · Boyan Onyshkevych · Hoifung Poon · Oren Etzioni · Ari Kobren · Arvind Neelakantan · Peter Clark -
2014 Demonstration: A Visual and Interactive IDE for Probabilistic Programming »
Sameer Singh · Luke Hewitt · Tim Rocktäschel · Sebastian Riedel -
2013 Workshop: Big Learning : Advances in Algorithms and Data Management »
Xinghao Pan · Haijie Gu · Joseph Gonzalez · Sameer Singh · Yucheng Low · Joseph Hellerstein · Derek G Murray · Raghu Ramakrishnan · Michael Jordan · Christopher Ré -
2012 Workshop: Big Learning : Algorithms, Systems, and Tools »
Sameer Singh · John Duchi · Yucheng Low · Joseph E Gonzalez -
2012 Poster: MAP Inference in Chains using Column Generation »
David Belanger · Alexandre T Passos · Sebastian Riedel · Andrew McCallum -
2011 Workshop: Big Learning: Algorithms, Systems, and Tools for Learning at Scale »
Joseph E Gonzalez · Sameer Singh · Graham Taylor · James Bergstra · Alice Zheng · Misha Bilenko · Yucheng Low · Yoshua Bengio · Michael Franklin · Carlos Guestrin · Andrew McCallum · Alexander Smola · Michael Jordan · Sugato Basu -
2011 Poster: Query-Aware MCMC »
Michael Wick · Andrew McCallum -
2009 Poster: Training Factor Graphs with Reinforcement Learning for Efficient MAP Inference »
Michael Wick · Khashayar Rohanimanesh · Sameer Singh · Andrew McCallum -
2009 Spotlight: Training Factor Graphs with Reinforcement Learning for Efficient MAP Inference »
Michael Wick · Khashayar Rohanimanesh · Sameer Singh · Andrew McCallum -
2009 Poster: Rethinking LDA: Why Priors Matter »
Hanna Wallach · David Mimno · Andrew McCallum -
2009 Spotlight: Rethinking LDA: Why Priors Matter »
Hanna Wallach · David Mimno · Andrew McCallum