Timezone: »

Learning to Hash with Binary Reconstructive Embeddings
Brian Kulis · Trevor Darrell

Wed Dec 09 07:00 PM -- 11:59 PM (PST) @ None #None

Fast retrieval methods are increasingly critical for many large-scale analysis tasks, and there have been several recent methods that attempt to learn hash functions for fast and accurate nearest neighbor searches. In this paper, we develop an algorithm for learning hash functions based on explicitly minimizing the reconstruction error between the original distances and the Hamming distances of the corresponding binary embeddings. We develop a scalable coordinate-descent algorithm for our proposed hashing objective that is able to efficiently learn hash functions in a variety of settings. Unlike existing methods such as semantic hashing and spectral hashing, our method is easily kernelized and does not require restrictive assumptions about the underlying distribution of the data. We present results over several domains to demonstrate that our method outperforms existing state-of-the-art techniques.

Author Information

Brian Kulis (UC Berkeley)
Trevor Darrell (UC Berkeley)

Related Events (a corresponding poster, oral, or spotlight)

More from the Same Authors