Timezone: »
Learning to rank is a relatively new field of study, aiming to learn a ranking function from a set of training data with relevancy labels. The ranking algorithms are often evaluated using Information Retrieval measures, such as Normalized Discounted Cumulative Gain [1] and Mean Average Precision [2]. Until recently, most learning to rank algorithms were not using a loss function related to the above mentioned evaluation measures. The main difficulty in direct optimization of these measures is that they depend on the ranks of documents, not the numerical values output by the ranking function. We propose a probabilistic framework that addresses this challenge by optimizing the expectation of NDCG over all the possible permutations of documents. A relaxation strategy is used to approximate the average of NDCG over the space of permutation, and a bound optimization approach is proposed to make the computation efficient. Extensive experiments show that the proposed algorithm outperforms state-of-the-art ranking algorithms on several benchmark data sets.
Author Information
Hamed Valizadegan (Michigan State University)
Rong Jin (Michigan State University (MSU))
Ruofei Zhang (Yahoo!)
Jianchang Mao (Yahoo! Labs)
Related Events (a corresponding poster, oral, or spotlight)
-
2009 Poster: Learning to Rank by Optimizing NDCG Measure »
Tue. Dec 8th 03:00 -- 07:59 AM Room
More from the Same Authors
-
2014 Poster: Extracting Certainty from Uncertainty: Transductive Pairwise Classification from Pairwise Similarities »
Tianbao Yang · Rong Jin -
2014 Poster: Top Rank Optimization in Linear Time »
Nan Li · Rong Jin · Zhi-Hua Zhou -
2013 Poster: Mixed Optimization for Smooth Functions »
Mehrdad Mahdavi · Lijun Zhang · Rong Jin -
2013 Poster: Linear Convergence with Condition Number Independent Access of Full Gradients »
Lijun Zhang · Mehrdad Mahdavi · Rong Jin -
2013 Poster: Stochastic Convex Optimization with Multiple Objectives »
Mehrdad Mahdavi · Tianbao Yang · Rong Jin -
2013 Poster: Speedup Matrix Completion with Side Information: Application to Multi-Label Learning »
Miao Xu · Rong Jin · Zhi-Hua Zhou -
2012 Poster: Nystr{รถ}m Method vs Random Fourier Features: A Theoretical and Empirical Comparison »
Tianbao Yang · Yu-Feng Li · Mehrdad Mahdavi · Rong Jin · Zhi-Hua Zhou -
2012 Poster: Semi-Crowdsourced Clustering: Generalizing Crowd Labeling by Robust Distance Metric Learning »
Jinfeng Yi · Rong Jin · Anil K Jain · Shaili Jain -
2012 Poster: Stochastic Gradient Descent with Only One Projection »
Mehrdad Mahdavi · Tianbao Yang · Rong Jin · Shenghuo Zhu -
2010 Poster: Active Learning by Querying Informative and Representative Examples »
Sheng-Jun Huang · Rong Jin · Zhi-Hua Zhou -
2010 Poster: Multi-label Multiple Kernel Learning by Stochastic Approximation: Application to Visual Object Recognition »
Serhat S Bucak · Rong Jin · Anil K Jain -
2009 Poster: Adaptive Regularization for Transductive Support Vector Machine »
Zenglin Xu · Rong Jin · Jianke Zhu · Irwin King · Michael R Lyu · Zhirong Yang -
2009 Spotlight: Adaptive Regularization for Transductive Support Vector Machine »
Zenglin Xu · Rong Jin · Jianke Zhu · Irwin King · Michael R Lyu · Zhirong Yang -
2009 Poster: Regularized Distance Metric Learning:Theory and Algorithm »
Rong Jin · Shijun Wang · Yang Zhou -
2009 Poster: Learning Bregman Distance Functions and Its Application for Semi-Supervised Clustering »
Lei Wu · Rong Jin · Steven Chu-Hong Hoi · Jianke Zhu · Nenghai Yu -
2009 Poster: DUOL: A Double Updating Approach for Online Learning »
Peilin Zhao · Steven Chu-Hong Hoi · Rong Jin -
2008 Poster: Multi-label Multiple Kernel Learning »
Shuiwang Ji · Liang Sun · Rong Jin · Jieping Ye -
2008 Spotlight: Multi-label Multiple Kernel Learning »
Shuiwang Ji · Liang Sun · Rong Jin · Jieping Ye -
2008 Poster: An Extended Level Method for Efficient Multiple Kernel Learning »
Zenglin Xu · Rong Jin · Irwin King · Michael R Lyu -
2008 Poster: Semi-supervised Learning with Weakly-Related Unlabeled Data : Towards Better Text Categorization »
Liu Yang · Rong Jin · Rahul Sukthankar -
2008 Spotlight: Semi-supervised Learning with Weakly-Related Unlabeled Data : Towards Better Text Categorization »
Liu Yang · Rong Jin · Rahul Sukthankar -
2007 Poster: Efficient Convex Relaxation for Transductive Support Vector Machine »
Zenglin Xu · Rong Jin · Jianke Zhu · Irwin King · Michael R Lyu -
2006 Poster: Generalized Maximum Margin Clustering and Unsupervised Kernel Learning »
Hamed Valizadegan · Rong Jin