Indian Buffet Processes with Power-law Behavior
Yee Whye Teh · Dilan Gorur

Tue Dec 8th 05:13 -- 05:14 PM @ None

The Indian buffet process (IBP) is an exchangeable distribution over binary matrices used in Bayesian nonparametric featural models. In this paper we propose a three-parameter generalization of the IBP exhibiting power-law behavior. We achieve this by generalizing the beta process (the de Finetti measure of the IBP) to the \emph{stable-beta process} and deriving the IBP corresponding to it. We find interesting relationships between the stable-beta process and the Pitman-Yor process (another stochastic process used in Bayesian nonparametric models with interesting power-law properties). We show that our power-law IBP is a good model for word occurrences in documents with improved performance over the normal IBP.

Author Information

Yee Whye Teh (University of Oxford, DeepMind)

I am a Professor of Statistical Machine Learning at the Department of Statistics, University of Oxford and a Research Scientist at DeepMind. I am also an Alan Turing Institute Fellow and a European Research Council Consolidator Fellow. I obtained my Ph.D. at the University of Toronto (working with Geoffrey Hinton), and did postdoctoral work at the University of California at Berkeley (with Michael Jordan) and National University of Singapore (as Lee Kuan Yew Postdoctoral Fellow). I was a Lecturer then a Reader at the Gatsby Computational Neuroscience Unit, UCL, and a tutorial fellow at University College Oxford, prior to my current appointment. I am interested in the statistical and computational foundations of intelligence, and works on scalable machine learning, probabilistic models, Bayesian nonparametrics and deep learning. I was programme co-chair of ICML 2017 and AISTATS 2010.

Dilan Gorur (DeepMind)

More from the Same Authors