Spotlight
A Smoothed Approximate Linear Program
Vijay Desai · Vivek Farias · Ciamac C Moallemi

Tue Dec 8th 05:23 -- 05:24 PM @ None

We present a novel linear program for the approximation of the dynamic programming cost-to-go function in high-dimensional stochastic control problems. LP approaches to approximate DP naturally restrict attention to approximations that are lower bounds to the optimal cost-to-go function. Our program -- the `smoothed approximate linear program -- relaxes this restriction in an appropriate fashion while remaining computationally tractable. Doing so appears to have several advantages: First, we demonstrate superior bounds on the quality of approximation to the optimal cost-to-go function afforded by our approach. Second, experiments with our approach on a challenging problem (the game of Tetris) show that the approach outperforms the existing LP approach (which has previously been shown to be competitive with several ADP algorithms) by an order of magnitude.

Author Information

Vijay Desai
Vivek Farias (Massachusetts Institute of Technology)
Ciamac C Moallemi (Columbia University)

More from the Same Authors