Timezone: »

Deep Learning and Unsupervised Feature Learning
Honglak Lee · Marc'Aurelio Ranzato · Yoshua Bengio · Geoffrey E Hinton · Yann LeCun · Andrew Y Ng

Fri Dec 10 07:30 AM -- 06:30 PM (PST) @ Hilton: Cheakmus

In recent years, there has been a lot of interest in algorithms that learn feature hierarchies from unlabeled data. Deep learning methods such as deep belief networks, sparse coding-based methods, convolutional networks, and deep Boltzmann machines, have shown promise and have already been successfully applied to a variety of tasks in computer vision, audio processing, natural language processing, information retrieval, and robotics.

In this workshop, we will bring together researchers who are interested in deep learning and unsupervised feature learning, review the recent technical progress, discuss the challenges, and identify promising future research directions. Through invited talks, panel discussions and presentations by attendees we will attempt to address some of the most important topics in deep learning today. We will discuss whether and why hierarchical systems are beneficial, what principles should guide the design of objective functions used to train these models, what are the advantages and disadvantages of bottom-up versus top-down approaches, how to design scalable systems, and how deep models can relate to biological systems. Finally, we will try to identify some of the major milestones and goals we would like to achieve during the next 5 or 10 years of research in deep learning.

Author Information

Honglak Lee (Google / U. Michigan)
Marc'Aurelio Ranzato (Facebook AI Research)
Yoshua Bengio (University of Montreal)

Yoshua Bengio (PhD'1991 in Computer Science, McGill University). After two post-doctoral years, one at MIT with Michael Jordan and one at AT&T Bell Laboratories with Yann LeCun, he became professor at the department of computer science and operations research at Université de Montréal. Author of two books (a third is in preparation) and more than 200 publications, he is among the most cited Canadian computer scientists and is or has been associate editor of the top journals in machine learning and neural networks. Since '2000 he holds a Canada Research Chair in Statistical Learning Algorithms, since '2006 an NSERC Chair, since '2005 his is a Senior Fellow of the Canadian Institute for Advanced Research and since 2014 he co-directs its program focused on deep learning. He is on the board of the NIPS foundation and has been program chair and general chair for NIPS. He has co-organized the Learning Workshop for 14 years and co-created the International Conference on Learning Representations. His interests are centered around a quest for AI through machine learning, and include fundamental questions on deep learning, representation learning, the geometry of generalization in high-dimensional spaces, manifold learning and biologically inspired learning algorithms.

Geoffrey E Hinton (Google & University of Toronto)

Geoffrey Hinton received his PhD in Artificial Intelligence from Edinburgh in 1978 and spent five years as a faculty member at Carnegie-Mellon where he pioneered back-propagation, Boltzmann machines and distributed representations of words. In 1987 he became a fellow of the Canadian Institute for Advanced Research and moved to the University of Toronto. In 1998 he founded the Gatsby Computational Neuroscience Unit at University College London, returning to the University of Toronto in 2001. His group at the University of Toronto then used deep learning to change the way speech recognition and object recognition are done. He currently splits his time between the University of Toronto and Google. In 2010 he received the NSERC Herzberg Gold Medal, Canada's top award in Science and Engineering.

Yann LeCun (Facebook AI Research and New York University)

Yann LeCun is VP & Chief AI Scientist at Facebook and Silver Professor at NYU affiliated with the Courant Institute of Mathematical Sciences & the Center for Data Science. He was the founding Director of Facebook AI Research and of the NYU Center for Data Science. He received an Engineering Diploma from ESIEE (Paris) and a PhD from Sorbonne Université. After a postdoc in Toronto he joined AT&T Bell Labs in 1988, and AT&T Labs in 1996 as Head of Image Processing Research. He joined NYU as a professor in 2003 and Facebook in 2013. His interests include AI machine learning, computer perception, robotics and computational neuroscience. He is the recipient of the 2018 ACM Turing Award (with Geoffrey Hinton and Yoshua Bengio) for "conceptual and engineering breakthroughs that have made deep neural networks a critical component of computing", a member of the National Academy of Sciences, the National Academy of Engineering and a Chevalier de la Légion d’Honneur.

Andrew Y Ng (Baidu Research)

More from the Same Authors