Timezone: »
Social computing aims to support the online social behavior through computational methods. The explosion of the Web has created and been creating social interactions and social contexts through the use of software, services and technologies, such as blogs, microblogs (Tweets), wikis, social network services, social bookmarking, social news, multimedia sharing sites, online auctions, reputation systems, and so on. Analyzing the information underneath the social interactions and social context, e.g., community detection, opinion mining, trend prediction, anomaly detection, product recommendation, expert finding, social ranking, information visualization, will benefit both of information providers and information consumers in the application areas of social sciences, economics, psychologies and computer sciences. However, the large volumes of user-generated contents and the complex structures among users and related entities require effective modeling methods and efficient solving algorithms, which therefore bring challenges to advanced techniques in machine learning. There are three major concerns:
1. How to effectively and accurately model the related task as a learning problem?
2. How to construct efficient and scalable algorithm to solve the learning task?
3. How to fully explore and exploit human computation?
This workshop aims to bring together researchers and practitioners interested in this area to share their perspectives, identify the challenges and opportunities, and discuss future research/application directions through invited talks, panel discussion, and oral/poster presentations.
We invite papers solving the problems in social computing using machine learning methods, such as statistical methods, graphical models, graph mining methods, matrix factorization, learning to rank, optimization, temporal analysis methods, information visualization methods, transfer learning, and others.
Author Information
Zenglin Xu (University of Electronic Science & Technology of China)
Irwin King (Chinese University of Hong Kong)
Shenghuo Zhu (NEC Laboratories America)
Yuan Qi (Purdue university)
Rong Yan (Facebook)
John Yen (Penn State University)
More from the Same Authors
-
2021 : Score-based Graph Generative Model for Neutrino Events Classification and Reconstruction »
Yiming Sun · Zixing Song · Irwin King -
2022 : Individual Fairness in Dynamic Financial Networks »
Zixing Song · Yueen Ma · Irwin King -
2023 Poster: Optimal Block-wise Asymmetric Graph Construction for Graph-based Semi-supervised Learning »
Zixing Song · Yifei Zhang · Irwin King -
2023 Poster: Predicting Global Label Relationship Matrix for Graph Neural Networks under Heterophily »
Langzhang Liang · Xiangjing Hu · Zenglin Xu · Zixing Song · Irwin King -
2023 Poster: Mitigating the Popularity Bias in Graph-based Collaborative Filtering »
Yifei Zhang · Hao Zhu · yankai Chen · Zixing Song · Piotr Koniusz · Irwin King -
2023 Poster: No Change, No Gain: Empowering Graph Neural Networks with Expected Model Change Maximization for Active Learning »
Zixing Song · Yifei Zhang · Irwin King -
2022 Poster: Towards Efficient Post-training Quantization of Pre-trained Language Models »
Haoli Bai · Lu Hou · Lifeng Shang · Xin Jiang · Irwin King · Michael R Lyu -
2020 Poster: Revisiting Parameter Sharing for Automatic Neural Channel Number Search »
Jiaxing Wang · Haoli Bai · Jiaxiang Wu · Xupeng Shi · Junzhou Huang · Irwin King · Michael R Lyu · Jian Cheng -
2020 Poster: Unsupervised Text Generation by Learning from Search »
Jingjing Li · Zichao Li · Lili Mou · Xin Jiang · Michael R Lyu · Irwin King -
2018 Poster: Almost Optimal Algorithms for Linear Stochastic Bandits with Heavy-Tailed Payoffs »
Han Shao · Xiaotian Yu · Irwin King · Michael R Lyu -
2018 Spotlight: Almost Optimal Algorithms for Linear Stochastic Bandits with Heavy-Tailed Payoffs »
Han Shao · Xiaotian Yu · Irwin King · Michael R Lyu -
2016 Poster: Distributed Flexible Nonlinear Tensor Factorization »
Shandian Zhe · Kai Zhang · Pengyuan Wang · Kuang-chih Lee · Zenglin Xu · Yuan Qi · Zoubin Ghahramani -
2014 Poster: Combinatorial Pure Exploration of Multi-Armed Bandits »
Shouyuan Chen · Tian Lin · Irwin King · Michael R Lyu · Wei Chen -
2014 Oral: Combinatorial Pure Exploration of Multi-Armed Bandits »
Shouyuan Chen · Tian Lin · Irwin King · Michael R Lyu · Wei Chen -
2013 Poster: Exact and Stable Recovery of Pairwise Interaction Tensors »
Shouyuan Chen · Michael R Lyu · Irwin King · Zenglin Xu -
2013 Spotlight: Exact and Stable Recovery of Pairwise Interaction Tensors »
Shouyuan Chen · Michael R Lyu · Irwin King · Zenglin Xu -
2012 Poster: Deep Learning of invariant features via tracked video sequences »
Will Y Zou · Andrew Y Ng · Shenghuo Zhu · Kai Yu -
2012 Poster: Stochastic Gradient Descent with Only One Projection »
Mehrdad Mahdavi · Tianbao Yang · Rong Jin · Shenghuo Zhu -
2011 Poster: t-divergence Based Approximate Inference »
Nan Ding · S.V.N. Vishwanathan · Yuan Qi -
2011 Poster: EigenNet: A Bayesian hybrid of generative and conditional models for sparse learning »
Yuan Qi · Feng Yan -
2010 Poster: Deep Coding Network »
Yuanqing Lin · Tong Zhang · Shenghuo Zhu · Kai Yu -
2009 Poster: Adaptive Regularization for Transductive Support Vector Machine »
Zenglin Xu · Rong Jin · Jianke Zhu · Irwin King · Michael R Lyu · Zhirong Yang -
2009 Spotlight: Adaptive Regularization for Transductive Support Vector Machine »
Zenglin Xu · Rong Jin · Jianke Zhu · Irwin King · Michael R Lyu · Zhirong Yang -
2009 Poster: Parallel Inference for Latent Dirichlet Allocation on Graphics Processing Units »
Feng Yan · Ningyi XU · Yuan Qi -
2009 Poster: Heavy-Tailed Symmetric Stochastic Neighbor Embedding »
Zhirong Yang · Irwin King · Zenglin Xu · Erkki Oja -
2009 Spotlight: Heavy-Tailed Symmetric Stochastic Neighbor Embedding »
Zhirong Yang · Irwin King · Zenglin Xu · Erkki Oja -
2008 Poster: Learning with Consistency between Inductive Functions and Kernels »
Haixuan Yang · Irwin King · Michael R Lyu -
2008 Poster: Stochastic Relational Models for Large-scale Dyadic Data using MCMC »
Shenghuo Zhu · Kai Yu · Yihong Gong -
2008 Spotlight: Learning with Consistency between Inductive Functions and Kernels »
Haixuan Yang · Irwin King · Michael R Lyu -
2008 Spotlight: Stochastic Relational Models for Large-scale Dyadic Data using MCMC »
Shenghuo Zhu · Kai Yu · Yihong Gong -
2008 Poster: An Extended Level Method for Efficient Multiple Kernel Learning »
Zenglin Xu · Rong Jin · Irwin King · Michael R Lyu -
2007 Poster: Efficient Convex Relaxation for Transductive Support Vector Machine »
Zenglin Xu · Rong Jin · Jianke Zhu · Irwin King · Michael R Lyu -
2007 Poster: Predictive Matrix-Variate t Models »
Shenghuo Zhu · Kai Yu · Yihong Gong