Workshop
Transfer Learning Via Rich Generative Models.
Russ Salakhutdinov · Ryan Adams · Josh Tenenbaum · Zoubin Ghahramani · Tom Griffiths

Sat Dec 11th 07:30 AM -- 06:30 PM @ Westin: Emerald A
Event URL: http://www.mit.edu/~rsalakhu/workshop_nips2010/index.html »

Intelligent systems must be capable of transferring previously-learned abstract knowledge to new concepts, given only a small or noisy set of examples. This transfer of higher order information to new learning tasks lies at the core of many problems in the fields of computer vision, cognitive science, machine learning, speech perception and natural language processing.

\par Over the last decade, there has been considerable progress in
developing cross-task transfer (e.g., multi-task learning and
semi-supervised learning) using both discriminative and generative approaches. However, many existing learning systems today can not cope with new tasks for which they have not been specifically trained. Even when applied to related tasks, trained systems often display unstable behavior. More recently, researchers have begun developing new approaches to building rich generative models that are capable of extracting useful, high-level structured representations from high-dimensional sensory input. The learned representations have been shown to give promising results for solving a multitude of novel learning tasks, even though these tasks may be unknown when the generative model is being trained. A few notable examples include learning of Deep Belief Networks, Deep Boltzmann Machines, deep nonparametric Bayesian models, as well as Bayesian models inspired by human learning. \

\par``Learning to learn'' new concepts via rich generative models has emerged as one of the most promising areas of research in both machine learning and cognitive science. Although there has been recent progress, existing computational models are still far from being able to represent, identify and learn the wide variety of possible patterns and structure in real-world data. The goal of this workshop is to assess the current state of the field and explore new directions in both theoretical foundations and empirical applications.

Author Information

Russ Salakhutdinov (Carnegie Mellon University)
Ryan Adams (Google Brain and Princeton University)
Josh Tenenbaum (MIT)

Josh Tenenbaum is an Associate Professor of Computational Cognitive Science at MIT in the Department of Brain and Cognitive Sciences and the Computer Science and Artificial Intelligence Laboratory (CSAIL). He received his PhD from MIT in 1999, and was an Assistant Professor at Stanford University from 1999 to 2002. He studies learning and inference in humans and machines, with the twin goals of understanding human intelligence in computational terms and bringing computers closer to human capacities. He focuses on problems of inductive generalization from limited data -- learning concepts and word meanings, inferring causal relations or goals -- and learning abstract knowledge that supports these inductive leaps in the form of probabilistic generative models or 'intuitive theories'. He has also developed several novel machine learning methods inspired by human learning and perception, most notably Isomap, an approach to unsupervised learning of nonlinear manifolds in high-dimensional data. He has been Associate Editor for the journal Cognitive Science, has been active on program committees for the CogSci and NIPS conferences, and has co-organized a number of workshops, tutorials and summer schools in human and machine learning. Several of his papers have received outstanding paper awards or best student paper awards at the IEEE Computer Vision and Pattern Recognition (CVPR), NIPS, and Cognitive Science conferences. He is the recipient of the New Investigator Award from the Society for Mathematical Psychology (2005), the Early Investigator Award from the Society of Experimental Psychologists (2007), and the Distinguished Scientific Award for Early Career Contribution to Psychology (in the area of cognition and human learning) from the American Psychological Association (2008).

Zoubin Ghahramani (Uber and University of Cambridge)

Zoubin Ghahramani is Professor of Information Engineering at the University of Cambridge, where he leads the Machine Learning Group. He studied computer science and cognitive science at the University of Pennsylvania, obtained his PhD from MIT in 1995, and was a postdoctoral fellow at the University of Toronto. His academic career includes concurrent appointments as one of the founding members of the Gatsby Computational Neuroscience Unit in London, and as a faculty member of CMU's Machine Learning Department for over 10 years. His current research interests include statistical machine learning, Bayesian nonparametrics, scalable inference, probabilistic programming, and building an automatic statistician. He has held a number of leadership roles as programme and general chair of the leading international conferences in machine learning including: AISTATS (2005), ICML (2007, 2011), and NIPS (2013, 2014). In 2015 he was elected a Fellow of the Royal Society.

Tom Griffiths (Princeton)

More from the Same Authors