Two-Layer Generalization Analysis for Ranking Using Rademacher Average
Wei Chen · Tie-Yan Liu · Zhi-Ming Ma

Mon Dec 6th 12:00 -- 12:00 AM @ None #None

This paper is concerned with the generalization analysis on learning to rank for information retrieval (IR). In IR, data are hierarchically organized, i.e., consisting of queries and documents per query. Previous generalization analysis for ranking, however, has not fully considered this structure, and cannot explain how the simultaneous change of query number and document number in the training data will affect the performance of algorithms. In this paper, we propose performing generalization analysis under the assumption of two-layer sampling, i.e., the i.i.d. sampling of queries and the conditional i.i.d sampling of documents per query. Such a sampling can better describe the generation mechanism of real data, and the corresponding generalization analysis can better explain the real behaviors of learning to rank algorithms. However, it is challenging to perform such analysis, because the documents associated with different queries are not identically distributed, and the documents associated with the same query become no longer independent if represented by features extracted from the matching between document and query. To tackle the challenge, we decompose the generalization error according to the two layers, and make use of the new concept of two-layer Rademacher average. The generalization bounds we obtained are quite intuitive and are in accordance with previous empirical studies on the performance of ranking algorithms.

Author Information

Wei Chen (Chinese Academy of Sciences)
Tie-Yan Liu (Microsoft Research Asia)

Tie-Yan Liu is an assistant managing director of Microsoft Research Asia, leading the machine learning research area. He is very well known for his pioneer work on learning to rank and computational advertising, and his recent research interests include deep learning, reinforcement learning, and distributed machine learning. Many of his technologies have been transferred to Microsoft’s products and online services (such as Bing, Microsoft Advertising, Windows, Xbox, and Azure), and open-sourced through Microsoft Cognitive Toolkit (CNTK), Microsoft Distributed Machine Learning Toolkit (DMTK), and Microsoft Graph Engine. He has also been actively contributing to academic communities. He is an adjunct/honorary professor at Carnegie Mellon University (CMU), University of Nottingham, and several other universities in China. He has published 200+ papers in refereed conferences and journals, with over 17000 citations. He has won quite a few awards, including the best student paper award at SIGIR (2008), the most cited paper award at Journal of Visual Communications and Image Representation (2004-2006), the research break-through award (2012) and research-team-of-the-year award (2017) at Microsoft Research, and Top-10 Springer Computer Science books by Chinese authors (2015), and the most cited Chinese researcher by Elsevier (2017). He has been invited to serve as general chair, program committee chair, local chair, or area chair for a dozen of top conferences including SIGIR, WWW, KDD, ICML, NIPS, IJCAI, AAAI, ACL, ICTIR, as well as associate editor of ACM Transactions on Information Systems, ACM Transactions on the Web, and Neurocomputing. Tie-Yan Liu is a fellow of the IEEE, and a distinguished member of the ACM.

Zhi-Ming Ma

More from the Same Authors