Timezone: »
Robust low-level image features have been proven to be effective representations for a variety of visual recognition tasks such as object recognition and scene classification; but pixels, or even local image patches, carry little semantic meanings. For high level visual tasks, such low-level image representations are potentially not enough. In this paper, we propose a high-level image representation, called the Object Bank, where an image is represented as a scale invariant response map of a large number of pre-trained generic object detectors, blind to the testing dataset or visual task. Leveraging on the Object Bank representation, superior performances on high level visual recognition tasks can be achieved with simple off-the-shelf classifiers such as logistic regression and linear SVM. Sparsity algorithms make our representation more efficient and scalable for large scene datasets, and reveal semantically meaningful feature patterns.
Author Information
Li-Jia Li (Stanford University)
Hao Su (UCSD)
Eric Xing (Petuum Inc. / Carnegie Mellon University)
Li Fei-Fei (Stanford University)
More from the Same Authors
-
2021 : ManiSkill: Generalizable Manipulation Skill Benchmark with Large-Scale Demonstrations »
Tongzhou Mu · Zhan Ling · Fanbo Xiang · Derek Yang · Xuanlin Li · Stone Tao · Zhiao Huang · Zhiwei Jia · Hao Su -
2021 : From One Hand to Multiple Hands: Imitation Learning for Dexterous Manipulation from Single-Camera Teleoperation »
Yuzhe Qin · Hao Su · Xiaolong Wang -
2021 : Multi-modal Self-supervised Pre-training for Large-scale Genome Data »
Shentong Mo · Xi Fu · Chenyang Hong · Yizhen Chen · Yuxuan Zheng · Xiangru Tang · Yanyan Lan · Zhiqiang Shen · Eric Xing -
2021 : Neural Abstructions: Abstractions that Support Construction for Grounded Language Learning »
Kaylee Burns · Christopher D Manning · Li Fei-Fei -
2021 : What Matters in Learning from Offline Human Demonstrations for Robot Manipulation »
Ajay Mandlekar · Danfei Xu · Josiah Wong · Chen Wang · Li Fei-Fei · Silvio Savarese · Yuke Zhu · Roberto Martín-Martín -
2022 : Exploring Transformer Backbones for Heterogeneous Treatment Effect Estimation »
yifan zhang · Hanlin Zhang · Zachary Lipton · Li Erran Li · Eric Xing -
2022 : Sample-Specific Contextualized Graphical Models Using Clinical and Molecular Data Reveal Transcriptional Network Heterogeneity Across 7000 Tumors »
Caleb Ellington · Ben Lengerich · Thomas Watkins · Jiekun Yang · Manolis Kellis · Eric Xing -
2021 Workshop: Math AI for Education (MATHAI4ED): Bridging the Gap Between Research and Smart Education »
Pan Lu · Yuhuai Wu · Sean Welleck · Xiaodan Liang · Eric Xing · James McClelland -
2021 Poster: Stabilizing Deep Q-Learning with ConvNets and Vision Transformers under Data Augmentation »
Nicklas Hansen · Hao Su · Xiaolong Wang -
2021 Poster: Multi-task Learning of Order-Consistent Causal Graphs »
Xinshi Chen · Haoran Sun · Caleb Ellington · Eric Xing · Le Song -
2021 Poster: Particle Cloud Generation with Message Passing Generative Adversarial Networks »
Raghav Kansal · Javier Duarte · Hao Su · Breno Orzari · Thiago Tomei · Maurizio Pierini · Mary Touranakou · jean-roch vlimant · Dimitrios Gunopulos -
2020 : Panel Discussion & Closing »
Yejin Choi · Alexei Efros · Chelsea Finn · Kristen Grauman · Quoc V Le · Yann LeCun · Ruslan Salakhutdinov · Eric Xing -
2020 Workshop: Self-Supervised Learning -- Theory and Practice »
Pengtao Xie · Shanghang Zhang · Pulkit Agrawal · Ishan Misra · Cynthia Rudin · Abdelrahman Mohamed · Wenzhen Yuan · Barret Zoph · Laurens van der Maaten · Xingyi Yang · Eric Xing -
2020 : Closing remarks from Fei-Fei Li, Sequoia Professor of Computer Science, Stanford University & Co-Director of Stanford’s Human-Centered AI Institute »
Li Fei-Fei -
2020 : Q/A for invited talk #5 »
Li Fei-Fei -
2020 : Creating diverse tasks to catalyze robot learning »
Li Fei-Fei -
2020 Poster: Regularizing Black-box Models for Improved Interpretability »
Gregory Plumb · Maruan Al-Shedivat · Ángel Alexander Cabrera · Adam Perer · Eric Xing · Ameet Talwalkar -
2020 Poster: AutoSync: Learning to Synchronize for Data-Parallel Distributed Deep Learning »
Hao Zhang · Yuan Li · Zhijie Deng · Xiaodan Liang · Lawrence Carin · Eric Xing -
2020 Poster: Improving GAN Training with Probability Ratio Clipping and Sample Reweighting »
Yue Wu · Pan Zhou · Andrew Wilson · Eric Xing · Zhiting Hu -
2019 : Poster Presentations »
Rahul Mehta · Andrew Lampinen · Binghong Chen · Sergio Pascual-Diaz · Jordi Grau-Moya · Aldo Faisal · Jonathan Tompson · Yiren Lu · Khimya Khetarpal · Martin Klissarov · Pierre-Luc Bacon · Doina Precup · Thanard Kurutach · Aviv Tamar · Pieter Abbeel · Jinke He · Maximilian Igl · Shimon Whiteson · Wendelin Boehmer · Raphaël Marinier · Olivier Pietquin · Karol Hausman · Sergey Levine · Chelsea Finn · Tianhe Yu · Lisa Lee · Benjamin Eysenbach · Emilio Parisotto · Eric Xing · Ruslan Salakhutdinov · Hongyu Ren · Anima Anandkumar · Deepak Pathak · Christopher Lu · Trevor Darrell · Alexei Efros · Phillip Isola · Feng Liu · Bo Han · Gang Niu · Masashi Sugiyama · Saurabh Kumar · Janith Petangoda · Johan Ferret · James McClelland · Kara Liu · Animesh Garg · Robert Lange -
2019 Workshop: Learning with Rich Experience: Integration of Learning Paradigms »
Zhiting Hu · Andrew Wilson · Chelsea Finn · Lisa Lee · Taylor Berg-Kirkpatrick · Ruslan Salakhutdinov · Eric Xing -
2019 Poster: Regression Planning Networks »
Danfei Xu · Roberto Martín-Martín · De-An Huang · Yuke Zhu · Silvio Savarese · Li Fei-Fei -
2019 Poster: Learning Robust Global Representations by Penalizing Local Predictive Power »
Haohan Wang · Songwei Ge · Zachary Lipton · Eric Xing -
2019 Poster: Learning Data Manipulation for Augmentation and Weighting »
Zhiting Hu · Bowen Tan · Russ Salakhutdinov · Tom Mitchell · Eric Xing -
2019 Poster: Learning Sample-Specific Models with Low-Rank Personalized Regression »
Ben Lengerich · Bryon Aragam · Eric Xing -
2019 Poster: HYPE: A Benchmark for Human eYe Perceptual Evaluation of Generative Models »
Sharon Zhou · Mitchell Gordon · Ranjay Krishna · Austin Narcomey · Li Fei-Fei · Michael Bernstein -
2019 Oral: HYPE: A Benchmark for Human eYe Perceptual Evaluation of Generative Models »
Sharon Zhou · Mitchell Gordon · Ranjay Krishna · Austin Narcomey · Li Fei-Fei · Michael Bernstein -
2018 Poster: The Sample Complexity of Semi-Supervised Learning with Nonparametric Mixture Models »
Chen Dan · Liu Leqi · Bryon Aragam · Pradeep Ravikumar · Eric Xing -
2018 Poster: Symbolic Graph Reasoning Meets Convolutions »
Xiaodan Liang · Zhiting Hu · Hao Zhang · Liang Lin · Eric Xing -
2018 Poster: Learning to Play With Intrinsically-Motivated, Self-Aware Agents »
Nick Haber · Damian Mrowca · Stephanie Wang · Li Fei-Fei · Daniel Yamins -
2018 Poster: DAGs with NO TEARS: Continuous Optimization for Structure Learning »
Xun Zheng · Bryon Aragam · Pradeep Ravikumar · Eric Xing -
2018 Spotlight: DAGs with NO TEARS: Continuous Optimization for Structure Learning »
Xun Zheng · Bryon Aragam · Pradeep Ravikumar · Eric Xing -
2018 Poster: Learning Pipelines with Limited Data and Domain Knowledge: A Study in Parsing Physics Problems »
Mrinmaya Sachan · Kumar Avinava Dubey · Tom Mitchell · Dan Roth · Eric Xing -
2018 Poster: Learning to Decompose and Disentangle Representations for Video Prediction »
Jun-Ting Hsieh · Bingbin Liu · De-An Huang · Li Fei-Fei · Juan Carlos Niebles -
2018 Poster: Deep Generative Models with Learnable Knowledge Constraints »
Zhiting Hu · Zichao Yang · Russ Salakhutdinov · LIANHUI Qin · Xiaodan Liang · Haoye Dong · Eric Xing -
2018 Poster: Hybrid Retrieval-Generation Reinforced Agent for Medical Image Report Generation »
Yuan Li · Xiaodan Liang · Zhiting Hu · Eric Xing -
2018 Poster: Neural Architecture Search with Bayesian Optimisation and Optimal Transport »
Kirthevasan Kandasamy · Willie Neiswanger · Jeff Schneider · Barnabas Poczos · Eric Xing -
2018 Spotlight: Neural Architecture Search with Bayesian Optimisation and Optimal Transport »
Kirthevasan Kandasamy · Willie Neiswanger · Jeff Schneider · Barnabas Poczos · Eric Xing -
2018 Poster: Unsupervised Text Style Transfer using Language Models as Discriminators »
Zichao Yang · Zhiting Hu · Chris Dyer · Eric Xing · Taylor Berg-Kirkpatrick -
2018 Poster: Flexible neural representation for physics prediction »
Damian Mrowca · Chengxu Zhuang · Elias Wang · Nick Haber · Li Fei-Fei · Josh Tenenbaum · Daniel Yamins -
2017 : Keynote II: Fei-Fei Li, Stanford »
Li Fei-Fei -
2017 Poster: Structured Generative Adversarial Networks »
Zhijie Deng · Hao Zhang · Xiaodan Liang · Luona Yang · Shizhen Xu · Jun Zhu · Eric Xing -
2017 Poster: Label Efficient Learning of Transferable Representations acrosss Domains and Tasks »
Zelun Luo · Yuliang Zou · Judy Hoffman · Li Fei-Fei -
2017 Poster: PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space »
Charles Ruizhongtai Qi · Li Yi · Hao Su · Leonidas Guibas -
2016 : Knowledge Acquisition for Visual Question Answering via Iterative Querying »
Yuke Zhu · Joseph Lim · Li Fei-Fei -
2016 : Eric Xing »
Eric Xing -
2016 Poster: Variance Reduction in Stochastic Gradient Langevin Dynamics »
Kumar Avinava Dubey · Sashank J. Reddi · Sinead Williamson · Barnabas Poczos · Alexander Smola · Eric Xing -
2016 Poster: Learning HMMs with Nonparametric Emissions via Spectral Decompositions of Continuous Matrices »
Kirthevasan Kandasamy · Maruan Al-Shedivat · Eric Xing -
2016 Poster: FPNN: Field Probing Neural Networks for 3D Data »
Yangyan Li · Soeren Pirk · Hao Su · Charles R Qi · Leonidas Guibas -
2016 Poster: Stochastic Variational Deep Kernel Learning »
Andrew Wilson · Zhiting Hu · Russ Salakhutdinov · Eric Xing -
2015 Workshop: Nonparametric Methods for Large Scale Representation Learning »
Andrew G Wilson · Alexander Smola · Eric Xing -
2015 Poster: The Human Kernel »
Andrew Wilson · Christoph Dann · Chris Lucas · Eric Xing -
2015 Spotlight: The Human Kernel »
Andrew Wilson · Christoph Dann · Chris Lucas · Eric Xing -
2014 Workshop: Modern Nonparametrics 3: Automating the Learning Pipeline »
Eric Xing · Mladen Kolar · Arthur Gretton · Samory Kpotufe · Han Liu · Zoltán Szabó · Alan Yuille · Andrew G Wilson · Ryan Tibshirani · Sasha Rakhlin · Damian Kozbur · Bharath Sriperumbudur · David Lopez-Paz · Kirthevasan Kandasamy · Francesco Orabona · Andreas Damianou · Wacha Bounliphone · Yanshuai Cao · Arijit Das · Yingzhen Yang · Giulia DeSalvo · Dmitry Storcheus · Roberto Valerio -
2014 Workshop: Modern Machine Learning and Natural Language Processing »
Ankur P Parikh · Avneesh Saluja · Chris Dyer · Eric Xing -
2014 Poster: On Model Parallelization and Scheduling Strategies for Distributed Machine Learning »
Seunghak Lee · Jin Kyu Kim · Xun Zheng · Qirong Ho · Garth Gibson · Eric Xing -
2014 Poster: Deep Fragment Embeddings for Bidirectional Image Sentence Mapping »
Andrej Karpathy · Armand Joulin · Li Fei-Fei -
2014 Poster: Dependent nonparametric trees for dynamic hierarchical clustering »
Kumar Avinava Dubey · Qirong Ho · Sinead Williamson · Eric Xing -
2013 Poster: More Effective Distributed ML via a Stale Synchronous Parallel Parameter Server »
Qirong Ho · James Cipar · Henggang Cui · Seunghak Lee · Jin Kyu Kim · Phillip B. Gibbons · Garth Gibson · Greg Ganger · Eric Xing -
2013 Oral: More Effective Distributed ML via a Stale Synchronous Parallel Parameter Server »
Qirong Ho · James Cipar · Henggang Cui · Seunghak Lee · Jin Kyu Kim · Phillip B. Gibbons · Garth Gibson · Greg Ganger · Eric Xing -
2013 Poster: Variance Reduction for Stochastic Gradient Optimization »
Chong Wang · Xi Chen · Alexander Smola · Eric Xing -
2013 Poster: Restricting exchangeable nonparametric distributions »
Sinead Williamson · Steven MacEachern · Eric Xing -
2013 Spotlight: Restricting exchangeable nonparametric distributions »
Sinead Williamson · Steven MacEachern · Eric Xing -
2013 Poster: A Scalable Approach to Probabilistic Latent Space Inference of Large-Scale Networks »
Junming Yin · Qirong Ho · Eric Xing -
2012 Workshop: Big Data Meets Computer Vision: First International Workshop on Large Scale Visual Recognition and Retrieval »
Jia Deng · Samy Bengio · Yuanqing Lin · Li Fei-Fei -
2012 Workshop: Spectral Algorithms for Latent Variable Models »
Ankur P Parikh · Le Song · Eric Xing -
2012 Poster: Shifting Weights: Adapting Object Detectors from Image to Video »
Kevin Tang · Vignesh Ramanathan · Li Fei-Fei · Daphne Koller -
2012 Poster: Monte Carlo Methods for Maximum Margin Supervised Topic Models »
Qixia Jiang · Jun Zhu · Maosong Sun · Eric Xing -
2012 Poster: On Triangular versus Edge Representations --- Towards Scalable Modeling of Networks »
Qirong Ho · Junming Yin · Eric Xing -
2012 Poster: Symmetric Correspondence Topic Models for Multilingual Text Analysis »
Kosuke Fukumasu · Koji Eguchi · Eric Xing -
2012 Spotlight: Symmetric Correspondence Topic Models for Multilingual Text Analysis »
Kosuke Fukumasu · Koji Eguchi · Eric Xing -
2012 Demonstration: EVA: Engine for Visual Annotation »
Jia Deng · Joanathan Krause · Zhiheng Huang · Alexander C Berg · Li Fei-Fei -
2011 Poster: Fast and Balanced: Efficient Label Tree Learning for Large Scale Object Recognition »
Jia Deng · Sanjeev Satheesh · Alexander C Berg · Li Fei-Fei -
2011 Poster: Infinite Latent SVM for Classification and Multi-task Learning »
Jun Zhu · Ning Chen · Eric Xing -
2011 Poster: Kernel Embeddings of Latent Tree Graphical Models »
Le Song · Ankur P Parikh · Eric Xing -
2011 Poster: Large-Scale Category Structure Aware Image Categorization »
Bin Zhao · Li Fei-Fei · Eric Xing -
2010 Session: Oral Session 10 »
Li Fei-Fei -
2010 Poster: Large Margin Learning of Upstream Scene Understanding Models »
Jun Zhu · Li-Jia Li · Li Fei-Fei · Eric Xing -
2010 Poster: Predictive Subspace Learning for Multi-view Data: a Large Margin Approach »
Ning Chen · Jun Zhu · Eric Xing -
2010 Poster: Adaptive Multi-Task Lasso: with Application to eQTL Detection »
Seunghak Lee · Jun Zhu · Eric Xing -
2009 Poster: Heterogeneous multitask learning with joint sparsity constraints »
Xiaolin Yang · Seyoung Kim · Eric Xing -
2009 Poster: Time-Varying Dynamic Bayesian Networks »
Le Song · Mladen Kolar · Eric Xing -
2009 Spotlight: Time-Varying Dynamic Bayesian Networks »
Le Song · Mladen Kolar · Eric Xing -
2009 Poster: Sparsistent Learning of Varying-coefficient Models with Structural Changes »
Mladen Kolar · Le Song · Eric Xing -
2009 Spotlight: Sparsistent Learning of Varying-coefficient Models with Structural Changes »
Mladen Kolar · Le Song · Eric Xing -
2008 Workshop: Analyzing Graphs: Theory and Applications »
Edo M Airoldi · David Blei · Jake M Hofman · Tony Jebara · Eric Xing -
2008 Poster: Mixed Membership Stochastic Blockmodels »
Edo M Airoldi · David Blei · Stephen E Fienberg · Eric Xing -
2008 Spotlight: Mixed Membership Stochastic Blockmodels »
Edo M Airoldi · David Blei · Stephen E Fienberg · Eric Xing -
2008 Poster: Partially Observed Maximum Entropy Discrimination Markov Networks »
Jun Zhu · Eric Xing · Bo Zhang -
2007 Workshop: Statistical Network Models »
Kevin Murphy · Lise Getoor · Eric Xing · Raphael Gottardo -
2007 Poster: HM-BiTAM: Bilingual Topic Exploration, Word Alignment, and Translation »
Bing Zhao · Eric Xing -
2006 Poster: A Hidden Markov Dirichlet Process Model for Genetic Recombination in Open Ancestral Space »
KyungAh Sohn · Eric Xing -
2006 Talk: A Hidden Markov Dirichlet Process Model for Genetic Recombination in Open Ancestral Space »
KyungAh Sohn · Eric Xing