Timezone: »

 
Poster
Phone Recognition with the Mean-Covariance Restricted Boltzmann Machine
George Dahl · Marc'Aurelio Ranzato · Abdel-rahman Mohamed · Geoffrey E Hinton

Mon Dec 06 12:00 AM -- 12:00 AM (PST) @

Straightforward application of Deep Belief Nets (DBNs) to acoustic modeling produces a rich distributed representation of speech data that is useful for recognition and yields impressive results on the speaker-independent TIMIT phone recognition task. However, the first-layer Gaussian-Bernoulli Restricted Boltzmann Machine (GRBM) has an important limitation, shared with mixtures of diagonal-covariance Gaussians: GRBMs treat different components of the acoustic input vector as conditionally independent given the hidden state. The mean-covariance restricted Boltzmann machine (mcRBM), first introduced for modeling natural images, is a much more representationally efficient and powerful way of modeling the covariance structure of speech data. Every configuration of the precision units of the mcRBM specifies a different precision matrix for the conditional distribution over the acoustic space. In this work, we use the mcRBM to learn features of speech data that serve as input into a standard DBN. The mcRBM features combined with DBNs allow us to achieve a phone error rate of 20.5\%, which is superior to all published results on speaker-independent TIMIT to date.

Author Information

George Dahl (Google Brain)

George Dahl is a research scientist on the Brain team at Google working on deep learning.

Marc'Aurelio Ranzato (DeepMind)
Abdel-rahman Mohamed (University of Toronto)
Geoffrey E Hinton (Google & University of Toronto)

Geoffrey Hinton received his PhD in Artificial Intelligence from Edinburgh in 1978 and spent five years as a faculty member at Carnegie-Mellon where he pioneered back-propagation, Boltzmann machines and distributed representations of words. In 1987 he became a fellow of the Canadian Institute for Advanced Research and moved to the University of Toronto. In 1998 he founded the Gatsby Computational Neuroscience Unit at University College London, returning to the University of Toronto in 2001. His group at the University of Toronto then used deep learning to change the way speech recognition and object recognition are done. He currently splits his time between the University of Toronto and Google. In 2010 he received the NSERC Herzberg Gold Medal, Canada's top award in Science and Engineering.

More from the Same Authors