Timezone: »

 
Poster
Gated Softmax Classification
Roland Memisevic · Christopher Zach · Geoffrey E Hinton · Marc Pollefeys

Mon Dec 06 12:00 AM -- 12:00 AM (PST) @

We describe a "log-bilinear" model that computes class probabilities by combining an input vector multiplicatively with a vector of binary latent variables. Even though the latent variables can take on exponentially many possible combinations of values, we can efficiently compute the exact probability of each class by marginalizing over the latent variables. This makes it possible to get the exact gradient of the log likelihood. The bilinear score-functions are defined using a three-dimensional weight tensor, and we show that factorizing this tensor allows the model to encode invariances inherent in a task by learning a dictionary of invariant basis functions. Experiments on a set of benchmark problems show that this fully probabilistic model can achieve classification performance that is competitive with (kernel) SVMs, backpropagation, and deep belief nets.

Author Information

Roland Memisevic (Qualcomm)
Christopher Zach (ETH Zurich)
Geoffrey E Hinton (Google & University of Toronto)

Geoffrey Hinton received his PhD in Artificial Intelligence from Edinburgh in 1978 and spent five years as a faculty member at Carnegie-Mellon where he pioneered back-propagation, Boltzmann machines and distributed representations of words. In 1987 he became a fellow of the Canadian Institute for Advanced Research and moved to the University of Toronto. In 1998 he founded the Gatsby Computational Neuroscience Unit at University College London, returning to the University of Toronto in 2001. His group at the University of Toronto then used deep learning to change the way speech recognition and object recognition are done. He currently splits his time between the University of Toronto and Google. In 2010 he received the NSERC Herzberg Gold Medal, Canada's top award in Science and Engineering.

Marc Pollefeys (ETH Zurich)

More from the Same Authors