Poster
PAC-Bayesian Model Selection for Reinforcement Learning
Mahdi Milani Fard · Joelle Pineau

Mon Dec 6th 12:00 -- 12:00 AM @ None #None

This paper introduces the first set of PAC-Bayesian bounds for the batch reinforcement learning problem in finite state spaces. These bounds hold regardless of the correctness of the prior distribution. We demonstrate how such bounds can be used for model-selection in control problems where prior information is available either on the dynamics of the environment, or on the value of actions. Our empirical results confirm that PAC-Bayesian model-selection is able to leverage prior distributions when they are informative and, unlike standard Bayesian RL approaches, ignores them when they are misleading.

Author Information

Mahdi Milani Fard (McGill University)
Joelle Pineau (McGill University)

Joelle Pineau is an Associate Professor and William Dawson Scholar at McGill University where she co-directs the Reasoning and Learning Lab. She also leads the Facebook AI Research lab in Montreal, Canada. She holds a BASc in Engineering from the University of Waterloo, and an MSc and PhD in Robotics from Carnegie Mellon University. Dr. Pineau's research focuses on developing new models and algorithms for planning and learning in complex partially-observable domains. She also works on applying these algorithms to complex problems in robotics, health care, games and conversational agents. She serves on the editorial board of the Journal of Artificial Intelligence Research and the Journal of Machine Learning Research and is currently President of the International Machine Learning Society. She is a recipient of NSERC's E.W.R. Steacie Memorial Fellowship (2018), a Fellow of the Association for the Advancement of Artificial Intelligence (AAAI), a Senior Fellow of the Canadian Institute for Advanced Research (CIFAR) and in 2016 was named a member of the College of New Scholars, Artists and Scientists by the Royal Society of Canada.

More from the Same Authors