Timezone: »
Distributing labeling tasks among hundreds or thousands of annotators is an increasingly important method for annotating large datasets. We present a method for estimating the underlying value (e.g. the class) of each image from (noisy) annotations provided by multiple annotators. Our method is based on a model of the image formation and annotation process. Each image has different characteristics that are represented in an abstract Euclidean space. Each annotator is modeled as a multidimensional entity with variables representing competence, expertise and bias. This allows the model to discover and represent groups of annotators that have different sets of skills and knowledge, as well as groups of images that differ qualitatively. We find that our model predicts ground truth labels on both synthetic and real data more accurately than state of the art methods. Experiments also show that our model, starting from a set of binary labels, may discover rich information, such as different ``schools of thought'' amongst the annotators, and can group together images belonging to separate categories.
Author Information
Peter Welinder (Caltech)
Steve Branson (University of California San Diego)
Serge Belongie (Cornell University)
Pietro Perona (California Institute of Technology)
Related Events (a corresponding poster, oral, or spotlight)
-
2010 Oral: The Multidimensional Wisdom of Crowds »
Wed. Dec 8th 06:00 -- 06:20 PM Room Regency Ballroom
More from the Same Authors
-
2021 : The Multi-Agent Behavior Dataset: Mouse Dyadic Social Interactions »
Jennifer J Sun · Tomomi Karigo · Dipam Chakraborty · Sharada Mohanty · Benjamin Wild · Quan Sun · Chen Chen · David Anderson · Pietro Perona · Yisong Yue · Ann Kennedy -
2021 : Occluded Video Instance Segmentation: Dataset and ICCV 2021 Challenge »
Jiyang Qi · Yan Gao · Yao Hu · Xinggang Wang · Xiaoyu Liu · Xiang Bai · Serge Belongie · Alan Yuille · Philip Torr · Song Bai -
2021 Poster: Geometry Processing with Neural Fields »
Guandao Yang · Serge Belongie · Bharath Hariharan · Vladlen Koltun -
2019 Poster: Positional Normalization »
Boyi Li · Felix Wu · Kilian Weinberger · Serge Belongie -
2019 Spotlight: Positional Normalization »
Boyi Li · Felix Wu · Kilian Weinberger · Serge Belongie -
2019 Poster: Teaching Multiple Concepts to a Forgetful Learner »
Anette Hunziker · Yuxin Chen · Oisin Mac Aodha · Manuel Gomez Rodriguez · Andreas Krause · Pietro Perona · Yisong Yue · Adish Singla -
2018 : Datasets and Benchmarks for Causal Learning »
Csaba Szepesvari · Isabelle Guyon · Nicolai Meinshausen · David Blei · Elias Bareinboim · Bernhard Schölkopf · Pietro Perona -
2018 : From Micro-Variables to Macro-Causes »
Pietro Perona -
2018 Poster: Understanding the Role of Adaptivity in Machine Teaching: The Case of Version Space Learners »
Yuxin Chen · Adish Singla · Oisin Mac Aodha · Pietro Perona · Yisong Yue -
2016 Poster: Residual Networks Behave Like Ensembles of Relatively Shallow Networks »
Andreas Veit · Michael J Wilber · Serge Belongie -
2012 Workshop: Human Computation for Science and Computational Sustainability »
Theodoros Damoulas · Thomas Dietterich · Edith Law · Serge Belongie -
2012 Poster: LUCID: Locally Uniform Comparison Image Descriptor »
Andrew M Ziegler · Eric Christiansen · David Kriegman · Serge Belongie -
2011 Poster: Crowdclustering »
Ryan G Gomes · Peter Welinder · Andreas Krause · Pietro Perona -
2011 Poster: Predicting response time and error rates in visual search »
Bo Chen · Vidhya Navalpakkam · Pietro Perona -
2010 Poster: Discriminative Clustering by Regularized Information Maximization »
Ryan G Gomes · Andreas Krause · Pietro Perona -
2006 Poster: Graph-Based Visual Saliency »
Jonathan Harel · Christof Koch · Pietro Perona -
2006 Talk: Graph-Based Visual Saliency »
Jonathan Harel · Christof Koch · Pietro Perona -
2006 Poster: Learning to Traverse Image Manifolds »
Piotr Dollar · Vincent Rabaud · Serge Belongie