Timezone: »

Learning Networks of Stochastic Differential Equations
José Bento · Morteza Ibrahimi · Andrea Montanari

Wed Dec 08 12:00 AM -- 12:00 AM (PST) @ None #None

We consider linear models for stochastic dynamics. Any such model can be associated a network (namely a directed graph) describing which degrees of freedom interact under the dynamics. We tackle the problem of learning such a network from observation of the system trajectory over a time interval T. We analyse the l1-regularized least squares algorithm and, in the setting in which the underlying network is sparse, we prove performance guarantees that are uniform in the sampling rate as long as this is sufficiently high. This result substantiates the notion of a well defined ‘time complexity’ for the network inference problem.

Author Information

José Bento (Boston College)
Morteza Ibrahimi (Google)
Andrea Montanari (Stanford)

More from the Same Authors