Timezone: »
Hypothesis testing on point processes has several applications such as model fitting, plasticity detection, and non-stationarity detection. Standard tools for hypothesis testing include tests on mean firing rate and time varying rate function. However, these statistics do not fully describe a point process and thus the tests can be misleading. In this paper, we introduce a family of non-parametric divergence measures for hypothesis testing. We extend the traditional Kolmogorov--Smirnov and Cramer--von-Mises tests for point process via stratification. The proposed divergence measures compare the underlying probability structure and, thus, is zero if and only if the point processes are the same. This leads to a more robust test of hypothesis. We prove consistency and show that these measures can be efficiently estimated from data. We demonstrate an application of using the proposed divergence as a cost function to find optimally matched spike trains.
Author Information
Sohan Seth (University of Florida)
Il Memming Park (Stony Brook University)
Austin J Brockmeier (University of Florida)
Mulugeta Semework (SUNY Downstate Medical Center)
John S Choi (SUNY Downstate Medical Center and NYU-Poly)
Joseph T Francis (SUNY Downstate and NYU-Poly)
Jose C Principe (University of Florida at Gainesville)
More from the Same Authors
-
2021 : Neural Latents Benchmark ‘21: Evaluating latent variable models of neural population activity »
Felix Pei · Joel Ye · David Zoltowski · Anqi Wu · Raeed Chowdhury · Hansem Sohn · Joseph O'Doherty · Krishna V Shenoy · Matthew Kaufman · Mark Churchland · Mehrdad Jazayeri · Lee Miller · Jonathan Pillow · Il Memming Park · Eva Dyer · Chethan Pandarinath -
2022 : Directed Information for Point Process Systems »
Shailaja Akella · Andre Bastos · Jose C Principe -
2014 Workshop: Large scale optical physiology: From data-acquisition to models of neural coding »
Il Memming Park · Jakob H Macke · Ferran Diego Andilla · Eftychios Pnevmatikakis · Jeremy Freeman -
2013 Poster: Bayesian entropy estimation for binary spike train data using parametric prior knowledge »
Evan Archer · Il Memming Park · Jonathan W Pillow -
2013 Poster: Universal models for binary spike patterns using centered Dirichlet processes »
Il Memming Park · Evan Archer · Kenneth W Latimer · Jonathan W Pillow -
2013 Spotlight: Bayesian entropy estimation for binary spike train data using parametric prior knowledge »
Evan Archer · Il Memming Park · Jonathan W Pillow -
2013 Poster: Spectral methods for neural characterization using generalized quadratic models »
Il Memming Park · Evan Archer · Nicholas Priebe · Jonathan W Pillow -
2012 Poster: Bayesian estimation of discrete entropy with mixtures of stick-breaking priors »
Evan Archer · Jonathan W Pillow · Il Memming Park -
2011 Poster: Bayesian Spike-Triggered Covariance Analysis »
Il Memming Park · Jonathan W Pillow -
2006 Workshop: Echo State Networks and Liquid State Machines »
Herbert Jaeger · Wolfgang Maass · Jose C Principe