Timezone: »
In discriminative machine learning one is interested in training a system to optimize a certain desired measure of performance, or loss. In binary classification one typically tries to minimizes the error rate. But in structured prediction each task often has its own measure of performance such as the BLEU score in machine translation or the intersection-over-union score in PASCAL segmentation. The most common approaches to structured prediction, structural SVMs and CRFs, do not minimize the task loss: the former minimizes a surrogate loss with no guarantees for task loss and the latter minimizes log loss independent of task loss. The main contribution of this paper is a theorem stating that a certain perceptron-like learning rule, involving features vectors derived from loss-adjusted inference, directly corresponds to the gradient of task loss. We give empirical results on phonetic alignment of a standard test set from the TIMIT corpus, which surpasses all previously reported results on this problem.
Author Information
David A McAllester (TTI-Chicago)
Tamir Hazan (Technion)
Joseph Keshet (Bar-Ilan University)
More from the Same Authors
-
2021 Spotlight: Learning Generalized Gumbel-max Causal Mechanisms »
Guy Lorberbom · Daniel D. Johnson · Chris Maddison · Daniel Tarlow · Tamir Hazan -
2022 Poster: On the Importance of Gradient Norm in PAC-Bayesian Bounds »
Itai Gat · Yossi Adi · Alex Schwing · Tamir Hazan -
2021 Poster: Learning Generalized Gumbel-max Causal Mechanisms »
Guy Lorberbom · Daniel D. Johnson · Chris Maddison · Daniel Tarlow · Tamir Hazan -
2020 Poster: Removing Bias in Multi-modal Classifiers: Regularization by Maximizing Functional Entropies »
Itai Gat · Idan Schwartz · Alex Schwing · Tamir Hazan -
2020 Poster: Direct Policy Gradients: Direct Optimization of Policies in Discrete Action Spaces »
Guy Lorberbom · Chris Maddison · Nicolas Heess · Tamir Hazan · Danny Tarlow -
2019 Poster: Direct Optimization through $\arg \max$ for Discrete Variational Auto-Encoder »
Guy Lorberbom · Andreea Gane · Tommi Jaakkola · Tamir Hazan -
2017 Poster: High-Order Attention Models for Visual Question Answering »
Idan Schwartz · Alex Schwing · Tamir Hazan -
2016 Poster: Constraints Based Convex Belief Propagation »
Yaniv Tenzer · Alex Schwing · Kevin Gimpel · Tamir Hazan -
2014 Workshop: Perturbations, Optimization, and Statistics »
Tamir Hazan · George Papandreou · Danny Tarlow -
2013 Workshop: Perturbations, Optimization, and Statistics »
Tamir Hazan · George Papandreou · Sasha Rakhlin · Danny Tarlow -
2013 Poster: Learning Efficient Random Maximum A-Posteriori Predictors with Non-Decomposable Loss Functions »
Tamir Hazan · Subhransu Maji · Joseph Keshet · Tommi Jaakkola -
2013 Poster: On Sampling from the Gibbs Distribution with Random Maximum A-Posteriori Perturbations »
Tamir Hazan · Subhransu Maji · Tommi Jaakkola -
2012 Workshop: Perturbations, Optimization, and Statistics »
Tamir Hazan · George Papandreou · Danny Tarlow -
2012 Poster: Globally Convergent Dual MAP LP Relaxation Solvers using Fenchel-Young Margins »
Alex Schwing · Tamir Hazan · Marc Pollefeys · Raquel Urtasun -
2011 Poster: Generalization Bounds and Consistency for Latent Structural Probit and Ramp Loss »
David Mcallester · Joseph Keshet -
2011 Oral: Generalization Bounds and Consistency for Latent Structural Probit and Ramp Loss »
David Mcallester · Joseph Keshet -
2010 Poster: A Primal-Dual Message-Passing Algorithm for Approximated Large Scale Structured Prediction »
Tamir Hazan · Raquel Urtasun -
2008 Workshop: Probabilistic Programming: Universal Languages, Systems and Applications »
Daniel Roy · John Winn · David A McAllester · Vikash Mansinghka · Josh Tenenbaum -
2008 Poster: Suppport Vector Machines with a Reject Option »
Yves Grandvalet · Joseph Keshet · Alain Rakotomamonjy · Stephane Canu