Timezone: »
The International Monitoring System (IMS) is a global network of sensors whose purpose is to identify potential violations of the Comprehensive Nuclear-Test-Ban Treaty (CTBT), primarily through detection and localization of seismic events. We report on the first stage of a project to improve on the current automated software system with a Bayesian inference system that computes the most likely global event history given the record of local sensor data. The new system, VISA (Vertically Integrated Seismological Analysis), is based on empirically calibrated, generative models of event occurrence, signal propagation, and signal detection. VISA exhibits significantly improved precision and recall compared to the current operational system and is able to detect events that are missed even by the human analysts who post-process the IMS output.
Author Information
Nimar Arora (Facebook)
Stuart J Russell (UC Berkeley)
Paul Kidwell (Lawrence Livermore National Lab)
Erik Sudderth (University of California, Irvine)
More from the Same Authors
-
2022 : Adversarial Policies Beat Professional-Level Go AIs »
Tony Wang · Adam Gleave · Nora Belrose · Tom Tseng · Michael Dennis · Yawen Duan · Viktor Pogrebniak · Joseph Miller · Sergey Levine · Stuart J Russell -
2021 : V&S | Panel discussion »
Michael Dennis · Stuart J Russell · Mireille Hildebrandt · Salome Viljoen · Natasha Jaques -
2021 : V&S | RL Fictions »
Stuart J Russell -
2021 Workshop: Political Economy of Reinforcement Learning Systems (PERLS) »
Thomas Gilbert · Stuart J Russell · Tom O Zick · Aaron Snoswell · Michael Dennis -
2021 Poster: Scalable and Stable Surrogates for Flexible Classifiers with Fairness Constraints »
Henry C Bendekgey · Erik Sudderth -
2018 Poster: Negotiable Reinforcement Learning for Pareto Optimal Sequential Decision-Making »
Nishant Desai · Andrew Critch · Stuart J Russell -
2017 Poster: Inverse Reward Design »
Dylan Hadfield-Menell · Smitha Milli · Pieter Abbeel · Stuart J Russell · Anca Dragan -
2017 Oral: Inverse Reward Design »
Dylan Hadfield-Menell · Smitha Milli · Pieter Abbeel · Stuart J Russell · Anca Dragan -
2016 Poster: Cooperative Inverse Reinforcement Learning »
Dylan Hadfield-Menell · Stuart J Russell · Pieter Abbeel · Anca Dragan -
2015 Poster: Gaussian Process Random Fields »
Dave Moore · Stuart J Russell -
2015 Poster: Scalable Adaptation of State Complexity for Nonparametric Hidden Markov Models »
Michael Hughes · William Stephenson · Erik Sudderth -
2014 Workshop: 3rd NIPS Workshop on Probabilistic Programming »
Daniel Roy · Josh Tenenbaum · Thomas Dietterich · Stuart J Russell · YI WU · Ulrik R Beierholm · Alp Kucukelbir · Zenna Tavares · Yura Perov · Daniel Lee · Brian Ruttenberg · Sameer Singh · Michael Hughes · Marco Gaboardi · Alexey Radul · Vikash Mansinghka · Frank Wood · Sebastian Riedel · Prakash Panangaden -
2014 Poster: Algorithm selection by rational metareasoning as a model of human strategy selection »
Falk Lieder · Dillon Plunkett · Jessica B Hamrick · Stuart J Russell · Nicholas Hay · Tom Griffiths -
2013 Poster: Multilinear Dynamical Systems for Tensor Time Series »
Mark Rogers · Lei Li · Stuart J Russell -
2013 Poster: Efficient Online Inference for Bayesian Nonparametric Relational Models »
Dae Il Kim · Prem Gopalan · David Blei · Erik Sudderth -
2013 Poster: Memoized Online Variational Inference for Dirichlet Process Mixture Models »
Michael Hughes · Erik Sudderth -
2012 Poster: Effective Split-Merge Monte Carlo Methods for Nonparametric Models of Sequential Data »
Michael Hughes · Emily Fox · Erik Sudderth -
2012 Poster: Truly Nonparametric Online Variational Inference for Hierarchical Dirichlet Processes »
Michael Bryant · Erik Sudderth -
2012 Poster: Minimization of Continuous Bethe Approximations: A Positive Variation »
Jason Pacheco · Erik Sudderth -
2012 Poster: From Deformations to Parts: Motion-based Segmentation of 3D Objects »
Soumya Ghosh · Erik Sudderth · Matthew Loper · Michael J Black -
2011 Poster: The Doubly Correlated Nonparametric Topic Model »
Dae Il Kim · Erik Sudderth -
2011 Poster: Spatial distance dependent Chinese Restaurant Process for image segmentation »
Soumya Ghosh · Andrei B Ungureanu · Erik Sudderth · David Blei -
2010 Spotlight: Layered image motion with explicit occlusions, temporal consistency, and depth ordering »
Deqing Sun · Erik Sudderth · Michael J Black -
2010 Poster: Layered image motion with explicit occlusions, temporal consistency, and depth ordering »
Deqing Sun · Erik Sudderth · Michael J Black -
2009 Session: Oral session 9: Bayesian Analysis »
Erik Sudderth -
2009 Poster: Sharing Features among Dynamical Systems with Beta Processes »
Emily Fox · Erik Sudderth · Michael Jordan · Alan S Willsky -
2009 Oral: Sharing Features among Dynamical Systems with Beta Processes »
Emily Fox · Erik Sudderth · Michael Jordan · Alan S Willsky -
2008 Oral: Shared Segmentation of Natural Scenes Using Dependent Pitman-Yor Processes »
Erik Sudderth · Michael Jordan -
2008 Poster: Nonparametric Bayesian Learning of Switching Linear Dynamical Systems »
Emily Fox · Erik Sudderth · Michael Jordan · Alan S Willsky -
2008 Poster: Shared Segmentation of Natural Scenes Using Dependent Pitman-Yor Processes »
Erik Sudderth · Michael Jordan -
2008 Spotlight: Nonparametric Bayesian Learning of Switching Linear Dynamical Systems »
Emily Fox · Erik Sudderth · Michael Jordan · Alan S Willsky -
2008 Poster: Probabilistic detection of short events, with application to critical care monitoring »
Norm Aleks · Stuart J Russell · Michael G Madden · Diane Morabito · Geoffrey T Manley · Kristan Staudenmayer · Mitchell Cohen -
2008 Session: Oral session 4: Combinatorial Approximation »
Erik Sudderth -
2007 Poster: Loop Series and Bethe Variational Bounds in Attractive Graphical Models »
Erik Sudderth · Martin J Wainwright · Alan S Willsky