Timezone: »
Poster
New Adaptive Algorithms for Online Classification
Francesco Orabona · Yacov Crammer
We propose a general framework to online learning for classification problems with time-varying potential functions in the adversarial setting. This framework allows to design and prove relative mistake bounds for any generic loss function. The mistake bounds can be specialized for the hinge loss, allowing to recover and improve the bounds of known online classification algorithms. By optimizing the general bound we derive a new online classification algorithm, called NAROW, that hybridly uses adaptive- and fixed- second order information. We analyze the properties of the algorithm and illustrate its performance using synthetic dataset.
Author Information
Francesco Orabona (Boston University)
Yacov Crammer (Technion)
More from the Same Authors
-
2022 Poster: Robustness to Unbounded Smoothness of Generalized SignSGD »
Michael Crawshaw · Mingrui Liu · Francesco Orabona · Wei Zhang · Zhenxun Zhuang -
2022 Poster: Finite Sample Analysis Of Dynamic Regression Parameter Learning »
Mark Kozdoba · Edward Moroshko · Shie Mannor · Yacov Crammer -
2021 Poster: Minimax Optimal Quantile and Semi-Adversarial Regret via Root-Logarithmic Regularizers »
Jeffrey Negrea · Blair Bilodeau · Nicolò Campolongo · Francesco Orabona · Dan Roy -
2020 Poster: Temporal Variability in Implicit Online Learning »
Nicolò Campolongo · Francesco Orabona -
2019 Poster: Momentum-Based Variance Reduction in Non-Convex SGD »
Ashok Cutkosky · Francesco Orabona -
2019 Poster: Kernel Truncated Randomized Ridge Regression: Optimal Rates and Low Noise Acceleration »
Kwang-Sung Jun · Ashok Cutkosky · Francesco Orabona -
2018 Poster: Efficient Loss-Based Decoding on Graphs for Extreme Classification »
Itay Evron · Edward Moroshko · Yacov Crammer -
2017 Poster: Rotting Bandits »
Nir Levine · Yacov Crammer · Shie Mannor -
2017 Poster: Training Deep Networks without Learning Rates Through Coin Betting »
Francesco Orabona · Tatiana Tommasi -
2016 Poster: Coin Betting and Parameter-Free Online Learning »
Francesco Orabona · David Pal -
2015 Poster: Linear Multi-Resource Allocation with Semi-Bandit Feedback »
Tor Lattimore · Yacov Crammer · Csaba Szepesvari -
2014 Workshop: Second Workshop on Transfer and Multi-Task Learning: Theory meets Practice »
Urun Dogan · Tatiana Tommasi · Yoshua Bengio · Francesco Orabona · Marius Kloft · Andres Munoz · Gunnar Rätsch · Hal Daumé III · Mehryar Mohri · Xuezhi Wang · Daniel Hernández-lobato · Song Liu · Thomas Unterthiner · Pascal Germain · Vinay P Namboodiri · Michael Goetz · Christopher Berlind · Sigurd Spieckermann · Marta Soare · Yujia Li · Vitaly Kuznetsov · Wenzhao Lian · Daniele Calandriello · Emilie Morvant -
2014 Workshop: Modern Nonparametrics 3: Automating the Learning Pipeline »
Eric Xing · Mladen Kolar · Arthur Gretton · Samory Kpotufe · Han Liu · Zoltán Szabó · Alan Yuille · Andrew G Wilson · Ryan Tibshirani · Sasha Rakhlin · Damian Kozbur · Bharath Sriperumbudur · David Lopez-Paz · Kirthevasan Kandasamy · Francesco Orabona · Andreas Damianou · Wacha Bounliphone · Yanshuai Cao · Arijit Das · Yingzhen Yang · Giulia DeSalvo · Dmitry Storcheus · Roberto Valerio -
2014 Poster: Learning Multiple Tasks in Parallel with a Shared Annotator »
Haim Cohen · Yacov Crammer -
2014 Poster: Simultaneous Model Selection and Optimization through Parameter-free Stochastic Learning »
Francesco Orabona -
2013 Workshop: Resource-Efficient Machine Learning »
Yevgeny Seldin · Yasin Abbasi Yadkori · Yacov Crammer · Ralf Herbrich · Peter Bartlett -
2013 Workshop: New Directions in Transfer and Multi-Task: Learning Across Domains and Tasks »
Urun Dogan · Marius Kloft · Tatiana Tommasi · Francesco Orabona · Massimiliano Pontil · Sinno Jialin Pan · Shai Ben-David · Arthur Gretton · Fei Sha · Marco Signoretto · Rajhans Samdani · Yun-Qian Miao · Mohammad Gheshlaghi azar · Ruth Urner · Christoph Lampert · Jonathan How -
2013 Poster: Dimension-Free Exponentiated Gradient »
Francesco Orabona -
2013 Spotlight: Dimension-Free Exponentiated Gradient »
Francesco Orabona -
2013 Poster: Regression-tree Tuning in a Streaming Setting »
Samory Kpotufe · Francesco Orabona -
2013 Spotlight: Regression-tree Tuning in a Streaming Setting »
Samory Kpotufe · Francesco Orabona -
2012 Workshop: Multi-Trade-offs in Machine Learning »
Yevgeny Seldin · Guy Lever · John Shawe-Taylor · Nicolò Cesa-Bianchi · Yacov Crammer · Francois Laviolette · Gabor Lugosi · Peter Bartlett -
2012 Poster: On Multilabel Classification and Ranking with Partial Feedback »
Claudio Gentile · Francesco Orabona -
2012 Spotlight: On Multilabel Classification and Ranking with Partial Feedback »
Claudio Gentile · Francesco Orabona -
2012 Poster: Volume Regularization for Binary Classification »
Yacov Crammer · Tal Wagner -
2012 Spotlight: Volume Regularization for Binary Classification »
Yacov Crammer · Tal Wagner -
2012 Poster: Learning Multiple Tasks using Shared Hypotheses »
Yacov Crammer · Yishay Mansour -
2011 Workshop: New Frontiers in Model Order Selection »
Yevgeny Seldin · Yacov Crammer · Nicolò Cesa-Bianchi · Francois Laviolette · John Shawe-Taylor -
2010 Poster: Learning via Gaussian Herding »
Yacov Crammer · Daniel Lee -
2010 Spotlight: Learning from Candidate Labeling Sets »
Jie Luo · Francesco Orabona -
2010 Poster: Learning from Candidate Labeling Sets »
Jie Luo · Francesco Orabona -
2009 Workshop: Learning from Multiple Sources with Applications to Robotics »
Barbara Caputo · Nicolò Cesa-Bianchi · David R Hardoon · Gayle Leen · Francesco Orabona · Jaakko Peltonen · Simon Rogers -
2009 Workshop: Advances in Ranking »
Shivani Agarwal · Chris J Burges · Yacov Crammer -
2009 Poster: Adaptive Regularization of Weight Vectors »
Yacov Crammer · Alex Kulesza · Mark Dredze -
2009 Spotlight: Adaptive Regularization of Weight Vectors »
Yacov Crammer · Alex Kulesza · Mark Dredze -
2008 Session: Oral session 6: Neural Coding »
Yacov Crammer -
2008 Poster: Exact Convex Confidence-Weighted Learning »
Yacov Crammer · Mark Dredze · Fernando Pereira -
2008 Spotlight: Exact Convex Confidence-Weighted Learning »
Yacov Crammer · Mark Dredze · Fernando Pereira -
2007 Poster: Learning Bounds for Domain Adaptation »
John Blitzer · Yacov Crammer · Alex Kulesza · Fernando Pereira · Jennifer Wortman Vaughan -
2006 Poster: Learning from Multiple Sources »
Yacov Crammer · Michael Kearns · Jennifer Wortman Vaughan -
2006 Poster: Analysis of Representations for Domain Adaptation »
John Blitzer · Shai Ben-David · Yacov Crammer · Fernando Pereira