Timezone: »
Poster
Multi-label Multiple Kernel Learning by Stochastic Approximation: Application to Visual Object Recognition
Serhat S Bucak · Rong Jin · Anil K Jain
Recent studies have shown that multiple kernel learning is very
effective for object recognition, leading to the popularity
of kernel learning in computer vision problems. In
this work, we develop an efficient algorithm for multi-label
multiple kernel learning (ML-MKL). We assume that all the classes under
consideration share the same combination of kernel functions, and the
objective is to find the optimal kernel combination that benefits
all the classes. Although several algorithms have been developed for
ML-MKL, their computational cost is linear in the number of classes,
making them unscalable when the number of classes is large, a challenge
frequently encountered in visual object recognition. We address this computational
challenge by developing a framework for ML-MKL that combines
the worst-case analysis with stochastic approximation. Our analysis shows
that the complexity of our algorithm is $O(m^{1/3}\sqrt{ln m})$,
where $m$ is the number of classes. Empirical studies with object
recognition show that while achieving similar classification
accuracy, the proposed method is significantly more efficient
than the state-of-the-art algorithms for ML-MKL.
Author Information
Serhat S Bucak (Michigan State University)
Rong Jin (Michigan State University (MSU))
Anil K Jain (Michigan State University)
More from the Same Authors
-
2022 Poster: Cluster and Aggregate: Face Recognition with Large Probe Set »
Minchul Kim · Feng Liu · Anil K Jain · Xiaoming Liu -
2014 Poster: Extracting Certainty from Uncertainty: Transductive Pairwise Classification from Pairwise Similarities »
Tianbao Yang · Rong Jin -
2014 Poster: Top Rank Optimization in Linear Time »
Nan Li · Rong Jin · Zhi-Hua Zhou -
2013 Poster: Mixed Optimization for Smooth Functions »
Mehrdad Mahdavi · Lijun Zhang · Rong Jin -
2013 Poster: Linear Convergence with Condition Number Independent Access of Full Gradients »
Lijun Zhang · Mehrdad Mahdavi · Rong Jin -
2013 Poster: Stochastic Convex Optimization with Multiple Objectives »
Mehrdad Mahdavi · Tianbao Yang · Rong Jin -
2013 Poster: Speedup Matrix Completion with Side Information: Application to Multi-Label Learning »
Miao Xu · Rong Jin · Zhi-Hua Zhou -
2012 Poster: Nystr{รถ}m Method vs Random Fourier Features: A Theoretical and Empirical Comparison »
Tianbao Yang · Yu-Feng Li · Mehrdad Mahdavi · Rong Jin · Zhi-Hua Zhou -
2012 Poster: Semi-Crowdsourced Clustering: Generalizing Crowd Labeling by Robust Distance Metric Learning »
Jinfeng Yi · Rong Jin · Anil K Jain · Shaili Jain -
2012 Poster: Stochastic Gradient Descent with Only One Projection »
Mehrdad Mahdavi · Tianbao Yang · Rong Jin · Shenghuo Zhu -
2010 Poster: Active Learning by Querying Informative and Representative Examples »
Sheng-Jun Huang · Rong Jin · Zhi-Hua Zhou -
2009 Poster: Adaptive Regularization for Transductive Support Vector Machine »
Zenglin Xu · Rong Jin · Jianke Zhu · Irwin King · Michael R Lyu · Zhirong Yang -
2009 Spotlight: Adaptive Regularization for Transductive Support Vector Machine »
Zenglin Xu · Rong Jin · Jianke Zhu · Irwin King · Michael R Lyu · Zhirong Yang -
2009 Poster: Regularized Distance Metric Learning:Theory and Algorithm »
Rong Jin · Shijun Wang · Yang Zhou -
2009 Poster: Learning Bregman Distance Functions and Its Application for Semi-Supervised Clustering »
Lei Wu · Rong Jin · Steven Chu-Hong Hoi · Jianke Zhu · Nenghai Yu -
2009 Poster: DUOL: A Double Updating Approach for Online Learning »
Peilin Zhao · Steven Chu-Hong Hoi · Rong Jin -
2009 Poster: Learning to Rank by Optimizing NDCG Measure »
Hamed Valizadegan · Rong Jin · Ruofei Zhang · Jianchang Mao -
2009 Spotlight: Learning to Rank by Optimizing NDCG Measure »
Hamed Valizadegan · Rong Jin · Ruofei Zhang · Jianchang Mao -
2008 Poster: Multi-label Multiple Kernel Learning »
Shuiwang Ji · Liang Sun · Rong Jin · Jieping Ye -
2008 Spotlight: Multi-label Multiple Kernel Learning »
Shuiwang Ji · Liang Sun · Rong Jin · Jieping Ye -
2008 Poster: An Extended Level Method for Efficient Multiple Kernel Learning »
Zenglin Xu · Rong Jin · Irwin King · Michael R Lyu -
2008 Poster: Semi-supervised Learning with Weakly-Related Unlabeled Data : Towards Better Text Categorization »
Liu Yang · Rong Jin · Rahul Sukthankar -
2008 Spotlight: Semi-supervised Learning with Weakly-Related Unlabeled Data : Towards Better Text Categorization »
Liu Yang · Rong Jin · Rahul Sukthankar -
2007 Poster: Efficient Convex Relaxation for Transductive Support Vector Machine »
Zenglin Xu · Rong Jin · Jianke Zhu · Irwin King · Michael R Lyu -
2006 Poster: Generalized Maximum Margin Clustering and Unsupervised Kernel Learning »
Hamed Valizadegan · Rong Jin