Timezone: »

 
Poster
Generating more realistic images using gated MRF's
Marc'Aurelio Ranzato · Volodymyr Mnih · Geoffrey E Hinton

Wed Dec 08 12:00 AM -- 12:00 AM (PST) @ None #None

Probabilistic models of natural images are usually evaluated by measuring performance on rather indirect tasks, such as denoising and inpainting. A more direct way to evaluate a generative model is to draw samples from it and to check whether statistical properties of the samples match the statistics of natural images. This method is seldom used with high-resolution images, because current models produce samples that are very different from natural images, as assessed by even simple visual inspection. We investigate the reasons for this failure and we show that by augmenting existing models so that there are two sets of latent variables, one set modelling pixel intensities and the other set modelling image-specific pixel covariances, we are able to generate high-resolution images that look much more realistic than before. The overall model can be interpreted as a gated MRF where both pair-wise dependencies and mean intensities of pixels are modulated by the states of latent variables. Finally, we confirm that if we disallow weight-sharing between receptive fields that overlap each other, the gated MRF learns more efficient internal representations, as demonstrated in several recognition tasks.

Author Information

Marc'Aurelio Ranzato (Facebook AI Research)
Volodymyr Mnih (DeepMind)
Geoffrey E Hinton (Google & University of Toronto)

Geoffrey Hinton received his PhD in Artificial Intelligence from Edinburgh in 1978 and spent five years as a faculty member at Carnegie-Mellon where he pioneered back-propagation, Boltzmann machines and distributed representations of words. In 1987 he became a fellow of the Canadian Institute for Advanced Research and moved to the University of Toronto. In 1998 he founded the Gatsby Computational Neuroscience Unit at University College London, returning to the University of Toronto in 2001. His group at the University of Toronto then used deep learning to change the way speech recognition and object recognition are done. He currently splits his time between the University of Toronto and Google. In 2010 he received the NSERC Herzberg Gold Medal, Canada's top award in Science and Engineering.

More from the Same Authors