Timezone: »
Bayesian optimization methods are often used to optimize unknown functions that are costly to evaluate. Typically, these methods sequentially select inputs to be evaluated one at a time based on a posterior over the unknown function that is updated after each evaluation. There are a number of effective sequential policies for selecting the individual inputs. In many applications, however, it is desirable to perform multiple evaluations in parallel, which requires selecting batches of multiple inputs to evaluate at once. In this paper, we propose a novel approach to batch Bayesian optimization, providing a policy for selecting batches of inputs with the goal of optimizing the function as efficiently as possible. The key idea is to exploit the availability of high-quality and efficient sequential policies, by using Monte-Carlo simulation to select input batches that closely match their expected behavior. To the best of our knowledge, this is the first batch selection policy for Bayesian optimization. Our experimental results on six benchmarks show that the proposed approach significantly outperforms two baselines and can lead to large advantages over a top sequential approach in terms of performance per unit time.
Author Information
Javad Azimi (Microsoft)
Alan Fern (Oregon State University)
Xiaoli Fern (Oregon State University)
More from the Same Authors
-
2022 : Offline Policy Comparison with Confidence: Benchmarks and Baselines »
Anurag Koul · Mariano Phielipp · Alan Fern -
2012 Workshop: Bayesian Optimization and Decision Making »
Javad Azimi · Roman Garnett · Frank R Hutter · Shakir Mohamed -
2011 Poster: Budgeted Optimization with Concurrent Stochastic-Duration Experiments »
Javad Azimi · Alan Fern · Xiaoli Fern -
2011 Spotlight: Budgeted Optimization with Concurrent Stochastic-Duration Experiments »
Javad Azimi · Alan Fern · Xiaoli Fern -
2011 Poster: Inverting Grice's Maxims to Learn Rules from Natural Language Extractions »
M. Shahed Sorower · Thomas Dietterich · Janardhan Rao Doppa · Walker Orr · Prasad Tadepalli · Xiaoli Fern -
2010 Poster: A Computational Decision Theory for Interactive Assistants »
Alan Fern · Prasad Tadepalli