Timezone: »
We consider multivariate regression problems involving high-dimensional predictor and response spaces. To efficiently address such problems, we propose a variable selection method, Multivariate Group Orthogonal Matching Pursuit, which extends the standard Orthogonal Matching Pursuit technique to account for arbitrary sparsity patterns induced by domain-specific groupings over both input and output variables, while also taking advantage of the correlation that may exist between the multiple outputs. We illustrate the utility of this framework for inferring causal relationships over a collection of high-dimensional time series variables. When applied to time-evolving social media content, our models yield a new family of causality-based influence measures that may be seen as an alternative to PageRank. Theoretical guarantees, extensive simulations and empirical studies confirm the generality and value of our framework.
Author Information
Aurelie Lozano (IBM Research)
Vikas Sindhwani (Google)
More from the Same Authors
-
2021 Poster: Adaptive Proximal Gradient Methods for Structured Neural Networks »
Jihun Yun · Aurelie Lozano · Eunho Yang -
2015 Poster: Structured Transforms for Small-Footprint Deep Learning »
Vikas Sindhwani · Tara Sainath · Sanjiv Kumar -
2015 Spotlight: Structured Transforms for Small-Footprint Deep Learning »
Vikas Sindhwani · Tara Sainath · Sanjiv Kumar -
2015 Poster: Closed-form Estimators for High-dimensional Generalized Linear Models »
Eunho Yang · Aurelie Lozano · Pradeep Ravikumar -
2015 Spotlight: Closed-form Estimators for High-dimensional Generalized Linear Models »
Eunho Yang · Aurelie Lozano · Pradeep Ravikumar -
2015 Poster: Robust Gaussian Graphical Modeling with the Trimmed Graphical Lasso »
Eunho Yang · Aurelie Lozano -
2014 Workshop: Riemannian geometry in machine learning, statistics and computer vision »
Minh Ha Quang · Vikas Sindhwani · Vittorio Murino · Michael Betancourt · Tom Fletcher · Richard I Hartley · Anuj Srivastava · Bart Vandereycken -
2014 Workshop: Out of the Box: Robustness in High Dimension »
Aurelie Lozano · Aleksandr Y Aravkin · Stephen Becker -
2014 Session: Oral Session 10 »
Aurelie Lozano -
2014 Poster: Elementary Estimators for Graphical Models »
Eunho Yang · Aurelie Lozano · Pradeep Ravikumar -
2013 Poster: Sketching Structured Matrices for Faster Nonlinear Regression »
Haim Avron · Vikas Sindhwani · David Woodruff -
2011 Poster: Non-parametric Group Orthogonal Matching Pursuit for Sparse Learning with Multiple Kernels »
Vikas Sindhwani · Aurelie Lozano -
2010 Workshop: Practical Application of Sparse Modeling: Open Issues and New Directions »
Irina Rish · Alexandru Niculescu-Mizil · Guillermo Cecchi · Aurelie Lozano -
2009 Poster: Grouped Orthogonal Matching Pursuit for Variable Selection and Prediction »
Aurelie Lozano · Grzegorz M Swirszcz · Naoki Abe -
2008 Poster: Regularized Co-Clustering with Dual Supervision »
Vikas Sindhwani · Jianying Hu · Aleksandra Mojsilovic -
2006 Poster: Relational Learning with Gaussian Processes »
Wei Chu · Vikas Sindhwani · Zoubin Ghahramani · Sathiya Selvaraj Keerthi -
2006 Poster: An Efficient Method for Gradient-Based Adaptation of Hyperparameters in SVM Models »
Sathiya Selvaraj Keerthi · Vikas Sindhwani · Olivier Chapelle -
2006 Poster: Branch and Bound for Semi-Supervised Support Vector Machines »
Olivier Chapelle · Vikas Sindhwani · Sathiya Selvaraj Keerthi