Spotlight
Learning invariant features using the Transformed Indian Buffet Process
Joseph L Austerweil · Tom Griffiths

Tue Dec 7th 05:15 -- 05:20 PM @ Regency Ballroom

Identifying the features of objects becomes a challenge when those features can change in their appearance. We introduce the Transformed Indian Buffet Process (tIBP), and use it to define a nonparametric Bayesian model that infers features that can transform across instantiations. We show that this model can identify features that are location invariant by modeling a previous experiment on human feature learning. However, allowing features to transform adds new kinds of ambiguity: Are two parts of an object the same feature with different transformations or two unique features? What transformations can features undergo? We present two new experiments in which we explore how people resolve these questions, showing that the tIBP model demonstrates a similar sensitivity to context to that shown by human learners when determining the invariant aspects of features.

Author Information

Joe L Austerweil (University of Wisconsin, Madison)

As a computational cognitive psychologist, my research program explores questions at the intersection of perception and higher-level cognition. I use recent advances in statistics and computer science to formulate ideal learner models to see how they solve these problems and then test the model predictions using traditional behavioral experimentation. Ideal learner models help us understand the knowledge people use to solve problems because such knowledge must be made explicit for the ideal learner model to successfully produce human behavior. This method yields novel machine learning methods and leads to the discovery of new psychological principles.

Tom Griffiths (Princeton)

More from the Same Authors