Timezone: »
Spotlight
b-Bit Minwise Hashing for Estimating Three-Way Similarities
Ping Li · Arnd C König · Wenhao Gui
Computing two-way and multi-way set similarities is a fundamental problem. This study focuses on estimating 3-way resemblance (Jaccard similarity) using b-bit minwise hashing. While traditional minwise hashing methods store each hashed value using 64 bits, b-bit minwise hashing only stores the lowest b bits (where b>= 2 for 3-way). The extension to 3-way similarity from the prior work on 2-way similarity is technically non-trivial. We develop the precise estimator which is accurate and very complicated; and we recommend a much simplified estimator suitable for sparse data. Our analysis shows that $b$-bit minwise hashing can normally achieve a 10 to 25-fold improvement in the storage space required for a given estimator accuracy of the 3-way resemblance.
Author Information
Ping Li (Baidu Research USA)
Arnd C König (Microsoft Research)
Wenhao Gui
Related Events (a corresponding poster, oral, or spotlight)
-
2010 Poster: b-Bit Minwise Hashing for Estimating Three-Way Similarities »
Mon. Dec 6th 08:00 -- 08:00 AM Room
More from the Same Authors
-
2017 Poster: Partial Hard Thresholding: Towards A Principled Analysis of Support Recovery »
Jie Shen · Ping Li -
2017 Poster: Simple strategies for recovering inner products from coarsely quantized random projections »
Ping Li · Martin Slawski -
2016 Poster: Exact Recovery of Hard Thresholding Pursuit »
Xiaotong Yuan · Ping Li · Tong Zhang -
2016 Poster: Learning Additive Exponential Family Graphical Models via $\ell_{2,1}$-norm Regularized M-Estimation »
Xiaotong Yuan · Ping Li · Tong Zhang · Qingshan Liu · Guangcan Liu -
2016 Poster: Quantized Random Projections and Non-Linear Estimation of Cosine Similarity »
Ping Li · Michael Mitzenmacher · Martin Slawski -
2015 Poster: b-bit Marginal Regression »
Martin Slawski · Ping Li -
2015 Spotlight: b-bit Marginal Regression »
Martin Slawski · Ping Li -
2015 Poster: Regularization-Free Estimation in Trace Regression with Symmetric Positive Semidefinite Matrices »
Martin Slawski · Ping Li · Matthias Hein -
2014 Poster: Asymmetric LSH (ALSH) for Sublinear Time Maximum Inner Product Search (MIPS) »
Anshumali Shrivastava · Ping Li -
2014 Poster: Recovery of Coherent Data via Low-Rank Dictionary Pursuit »
Guangcan Liu · Ping Li -
2014 Poster: Online Optimization for Max-Norm Regularization »
Jie Shen · Huan Xu · Ping Li -
2014 Spotlight: Recovery of Coherent Data via Low-Rank Dictionary Pursuit »
Guangcan Liu · Ping Li -
2014 Oral: Asymmetric LSH (ALSH) for Sublinear Time Maximum Inner Product Search (MIPS) »
Anshumali Shrivastava · Ping Li -
2013 Poster: Beyond Pairwise: Provably Fast Algorithms for Approximate $k$-Way Similarity Search »
Anshumali Shrivastava · Ping Li -
2013 Poster: Sign Cauchy Projections and Chi-Square Kernel »
Ping Li · Gennady Samorodnitsk · John Hopcroft -
2012 Poster: Entropy Estimations Using Correlated Symmetric Stable Random Projections »
Ping Li · Cun-Hui Zhang -
2012 Poster: One Permutation Hashing »
Ping Li · Art B Owen · Cun-Hui Zhang -
2011 Poster: Hashing Algorithms for Large-Scale Learning »
Ping Li · Anshumali Shrivastava · Joshua L Moore · Arnd C König -
2008 Poster: One sketch for all: Theory and Application of Conditional Random Sampling »
Ping Li · Kenneth W Church · Trevor Hastie -
2008 Spotlight: One sketch for all: Theory and Application of Conditional Random Sampling »
Ping Li · Kenneth W Church · Trevor Hastie -
2007 Spotlight: McRank: Learning to Rank Using Multiple Classification and Gradient Boosting »
Ping Li · Chris J Burges · Qiang Wu -
2007 Poster: McRank: Learning to Rank Using Multiple Classification and Gradient Boosting »
Ping Li · Chris J Burges · Qiang Wu -
2007 Poster: A Unified Near-Optimal Estimator For Dimension Reduction in $l_\alpha$ ($0<\alpha\leq 2$) Using Sta »
Ping Li · Trevor Hastie -
2006 Poster: Conditional Random Sampling: A Sketch-based Sampling Technique for Sparse Data »
Ping Li · Kenneth W Church · Trevor Hastie