Timezone: »

 
Posner Lecture
From kernels to causal inference
Bernhard Schölkopf

Wed Dec 14 12:30 AM -- 01:20 AM (PST) @ None

Kernel methods in machine learning have expanded from tricks to construct nonlinear algorithms to general tools to assay higher order statistics and properties of distributions. They find applications also in causal inference, an intriguing field that examines causal structures by testing their probabilistic footprints. However, the links between causal inference and modern machine learning go beyond this and the talk will outline some initial thoughts how problems like covariate shift adaptation and semi-supervised learning can benefit from the causal methodology.

Author Information

Bernhard Schölkopf (MPI for Intelligent Systems)

Bernhard Scholkopf received degrees in mathematics (London) and physics (Tubingen), and a doctorate in computer science from the Technical University Berlin. He has researched at AT&T Bell Labs, at GMD FIRST, Berlin, at the Australian National University, Canberra, and at Microsoft Research Cambridge (UK). In 2001, he was appointed scientific member of the Max Planck Society and director at the MPI for Biological Cybernetics; in 2010 he founded the Max Planck Institute for Intelligent Systems. For further information, see www.kyb.tuebingen.mpg.de/~bs.

More from the Same Authors