Timezone: »
Modern classification tasks usually involve many class labels and can be informed by a broad range of features. Many of these tasks are tackled by constructing a set of classifiers, which are then applied at test time and then pieced together in a fixed procedure determined in advance or at training time. We present an active classification process at the test time, where each classifier in a large ensemble is viewed as a potential observation that might inform our classification process. Observations are then selected dynamically based on previous observations, using a value-theoretic computation that balances an estimate of the expected classification gain from each observation as well as its computational cost. The expected classification gain is computed using a probabilistic model that uses the outcome from previous observations. This active classification process is applied at test time for each individual test instance, resulting in an efficient instance-specific decision path. We demonstrate the benefit of the active scheme on various real-world datasets, and show that it can achieve comparable or even higher classification accuracy at a fraction of the computational costs of traditional methods.
Author Information
Tianshi Gao (Facebook)
Daphne Koller (insitro)
Daphne Koller is the Rajeev Motwani Professor of Computer Science at Stanford University and the co-founder and co-CEO of Coursera, a social entrepreneurship company that works with the best universities to connect anyone around the world with the best education, for free. Coursera is the leading MOOC (Massive Open Online Course) platform, and has partnered with dozens of the world’s top universities to offer hundreds of courses in a broad range of disciplines to millions of students, spanning every country in the world. In her research life, she works in the area of machine learning and probabilistic modeling, with applications to systems biology and personalized medicine. She is the author of over 200 refereed publications in venues that span a range of disciplines, and has given over 15 keynote talks at major conferences. She is the recipient of many awards, which include the Presidential Early Career Award for Scientists and Engineers (PECASE), the MacArthur Foundation Fellowship, the ACM/Infosys award, and membership in the US National Academy of Engineering. She is also an award winning teacher, who pioneered in her Stanford class many of the ideas that underlie the Coursera user experience. She received her BSc and MSc from the Hebrew University of Jerusalem, and her PhD from Stanford in 1994.
Related Events (a corresponding poster, oral, or spotlight)
-
2011 Spotlight: Active Classification based on Value of Classifier »
Wed. Dec 14th 11:52 -- 11:56 AM Room
More from the Same Authors
-
2021 : Regression modeling on DNA encoded libraries »
Ralph Ma · Gabriel Dreiman · Fiorella Ruggiu · Adam Riesselman · Bowen Liu · Mohammad M Sultan · Daphne Koller -
2019 : In conversations: Daphne Koller and Barbara Englehardt »
Daphne Koller · Barbara Engelhardt -
2013 Workshop: Probabilistic Models for Big Data »
Neil D Lawrence · Joaquin Quiñonero-Candela · Tianshi Gao · James Hensman · Zoubin Ghahramani · Max Welling · David Blei · Ralf Herbrich -
2013 Invited Talk: The Online Revolution: Learning without Limits »
Daphne Koller -
2012 Poster: Shifting Weights: Adapting Object Detectors from Image to Video »
Kevin Tang · Vignesh Ramanathan · Li Fei-Fei · Daphne Koller -
2010 Poster: Self-Paced Learning for Latent Variable Models »
M. Pawan Kumar · Benjamin D Packer · Daphne Koller -
2009 Poster: Region-based Segmentation and Object Detection »
Stephen Gould · Tianshi Gao · Daphne Koller -
2009 Spotlight: Region-based Segmentation and Object Detection »
Stephen Gould · Tianshi Gao · Daphne Koller -
2009 Poster: Learning a Small Mixture of Trees »
M. Pawan Kumar · Daphne Koller -
2008 Oral: Cascaded Classification Models: Combining Models for Holistic Scene Understanding »
Geremy Heitz · Stephen Gould · Ashutosh Saxena · Daphne Koller -
2008 Poster: Cascaded Classification Models: Combining Models for Holistic Scene Understanding »
Geremy Heitz · Stephen Gould · Ashutosh Saxena · Daphne Koller -
2008 Poster: LOOPS: Localizing Object Outlines using Probabilistic Shape »
Geremy Heitz · Gal Elidan · Benjamin D Packer · Daphne Koller -
2007 Demonstration: Holistic Scene Understanding from Visual and Range Data »
Stephen Gould · Morgan Quigley · Andrew Y Ng · Daphne Koller -
2006 Poster: Max-margin classification of incomplete data »
Gal Chechik · Geremy Heitz · Gal Elidan · Pieter Abbeel · Daphne Koller -
2006 Poster: Temporal and Cross-Subject Probabilistic Models for fMRI Prediction Task »
Alexis Battle · Gal Chechik · Daphne Koller -
2006 Spotlight: Max-margin classification of incomplete data »
Gal Chechik · Geremy Heitz · Gal Elidan · Pieter Abbeel · Daphne Koller -
2006 Talk: Temporal and Cross-Subject Probabilistic Models for fMRI Prediction Task »
Alexis Battle · Gal Chechik · Daphne Koller -
2006 Poster: Using Combinatorial Optimization within Max-Product Belief Propagation »
John Duchi · Danny Tarlow · Gal Elidan · Daphne Koller -
2006 Spotlight: Using Combinatorial Optimization within Max-Product Belief Propagation »
John Duchi · Danny Tarlow · Gal Elidan · Daphne Koller -
2006 Poster: Efficient Structure Learning of Markov Networks using L1-Regularization »
Su-In Lee · Varun Ganapathi · Daphne Koller