Timezone: »

 
Poster
Active Ranking using Pairwise Comparisons
Kevin G Jamieson · Rob Nowak

Mon Dec 12 10:00 AM -- 02:59 PM (PST) @
This paper examines the problem of ranking a collection of objects using pairwise comparisons (rankings of two objects). In general, the ranking of $n$ objects can be identified by standard sorting methods using $n\log_2 n$ pairwise comparisons. We are interested in natural situations in which relationships among the objects may allow for ranking using far fewer pairwise comparisons. {Specifically, we assume that the objects can be embedded into a $d$-dimensional Euclidean space and that the rankings reflect their relative distances from a common reference point in $\R^d$. We show that under this assumption the number of possible rankings grows like $n^{2d}$ and demonstrate an algorithm that can identify a randomly selected ranking using just slightly more than $d\log n$ adaptively selected pairwise comparisons, on average.} If instead the comparisons are chosen at random, then almost all pairwise comparisons must be made in order to identify any ranking. In addition, we propose a robust, error-tolerant algorithm that only requires that the pairwise comparisons are probably correct. Experimental studies with synthetic and real datasets support the conclusions of our theoretical analysis.

Author Information

Kevin G Jamieson (University of Wisconsin)
Rob Nowak (Wisconsin)

More from the Same Authors